CIESC Journal ›› 2016, Vol. 67 ›› Issue (1): 6-13.DOI: 10.11949/j.issn.0438-1157.20151488
Previous Articles Next Articles
LIU Changjun1, GUO Qiuting1, YE Jingyun1, SUN Kaihang1, FAN Zhigang1, GE Qingfeng1,2
Received:
2015-09-23
Revised:
2015-11-05
Online:
2016-01-05
Published:
2016-01-05
Supported by:
supported by the National Science Fund for Distinguished Young Scholars of China(20225618) and the National Natural Science Foundation of China (21536008).
刘昌俊1, 郭秋婷1, 叶静云1, 孙楷航1, 范志刚1, 葛庆峰1,2
通讯作者:
刘昌俊
基金资助:
国家杰出青年科学基金项目(20225618);国家自然科学基金重点项目(21536008)。
CLC Number:
LIU Changjun, GUO Qiuting, YE Jingyun, SUN Kaihang, FAN Zhigang, GE Qingfeng. Perspective on catalyst investigation for CO2 conversion and related issues[J]. CIESC Journal, 2016, 67(1): 6-13.
刘昌俊, 郭秋婷, 叶静云, 孙楷航, 范志刚, 葛庆峰. 二氧化碳转化催化剂研究进展及相关问题思考[J]. 化工学报, 2016, 67(1): 6-13.
[1] | 孙洪志, 王倩, 宋名秀, 等. CO2化学利用的研究进展[J]. 化工进展, 2013, 32(7): 1666-1672. DOI: 10.3969/j.issn.1000-6613. 2013.07.036. |
SUN H Z, WANG Q, SONG M X, et al. Progress in the chemical utilization of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2013, 32(7): 1666-1672. DOI: 10.3969/j.issn.1000-6613. 2013.07.036. | |
[2] | 高文桂, 王华, 韩冲, 等. MgO、CaO助剂对CO2加氢制备甲醇CuO-ZnO-Al2O3催化剂性能的影响 [J]. 化工进展, 2014, 33(11): 2963-2969. DOI: 10.3969/j.issn.1000-6613.2014.11.023. |
GAO W G, WANG H,HAN C,et al. Effect of promoter MgO,CaO on the performance of CuO-ZnO-Al2O3 catalyst for methanol synthesis through CO2 hydrogenation [J]. Chemical Industry and Engineering Progress, 2014, 33(11): 2963-2969. DOI: 10.3969/j.issn. 1000-6613. 2014.11.023. | |
[3] | CENTI G, PERATHONER S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels [J]. Catalysis Today, 2009, 148(3/4): 191-205. DOI: 10.1016/j.cattod.2009.07.075. |
[4] | 彭辉, 吴志红, 张建林, 等. 基于能带匹配理论设计CO2光催化还原催化剂的研究进展 [J]. 化工进展, 2014, 33(11): 3007-3012. DOI: 10.3969/j.issn.1000-6613.2014.11.029. |
PENG H,WU Z H,ZHANG J L,et al. Progress in designing CO2 photocatalyst based on energy band match theory [J]. Chemical Industry and Engineering Progress, 2014, 33(11): 3007-3012. DOI: 10.3969/j.issn.1000-6613.2014.11.029. | |
[5] | 熊卓, 赵永椿, 张军营, 等. Ti基CO2光催化还原及其影响因素研究进展 [J]. 化工进展,2013, 32(5): 1043-1052. DOI: 10.3969/j.issn. 1000-6613.2013.05.014. |
XIONG Z,ZHAO Y C,ZHANG J Y,et al. Research progress in photocatalytic reduction of CO2 using titania-based catalysts [J]. Chemical Industry and Engineering Progress, 2013, 32(5): 1043-1052. DOI: 10.3969/j.issn.1000-6613.2013.05.014. | |
[6] | LIU C J. Do we have a rapid solution for CO2 utilization? A perspective from China [J]. Greenhouse Gases: Science & Technology, 2012, 2(2): 75-76. DOI: 10.1002/ghg.1282. |
[7] | ARESTA M. Carbon Dioxide as Chemical Feedstock[M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. |
[8] | GOEPPERT A, CZAUN M, JONES J P, et al. Recycling of carbon dioxide to methanol and derived products-closing the loop [J]. Chemical Society Review, 2014, 43: 7995-8048. DOI: 10.1039/C4CS00122B. |
[9] | LIAO F L, HUANG Y Q, GE J W, et al. Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials' interface in selective hydrogenation of CO2 to CH3OH [J]. Angewandte Chemie-International Edition, 2011, 50(9): 2162-2165. DOI: 10.1002/anie.201007108. |
[10] | 叶静云. 二氧化碳加氢In2O3系催化剂理论与实验研究[D].天津:天津大学,2013. |
YE Jingyun. Theoretical and experimental studies of CO2 hydrogenation on the In2O3 based catalyst [D]. Tianjin: Tianjin University, 2013 | |
[11] | CHENG D J, NEGREIROS F R, APRA E, et al. Computational approaches to the chemical conversion of carbon dioxide [J]. ChemSusChem, 2013, 6(6): 944-965. DOI: 10.1002/cssc.201200872. |
[12] | 石磊, 张婉莹, 王玉鑫, 等.低温甲醇合成研究进展 [J]. 化工学报, 2015, 66(9): 3333-3340. |
SHI L, ZHANG W Y, WANG Y X,et al. Research developments of low-temperature methanol synthesis [J]. CIESC Journal, 2015, 66(9): 3333-3340. DOI: 10.11949/j.issn.0438-1157.20150834. | |
[13] | WANG W, WANG S P, MA X B, et al. Recent advances in catalytic hydrogenation of carbon dioxide [J]. Chemical Society Review, 2011, 40: 3703-3727. DOI: 10.1039/C1CS15008A. |
[14] | SAEIDI S, AMIN N A S, RAHIMPOUR M R. Hydrogenation of CO2 to value-added products—a review and potential future developments [J]. Journal of CO2 Utilization, 2014, 5: 66-81. DOI: 10.1016/j.jcou. 2013.12.005. |
[15] | LIU C J, YE J Y, JIANG J J, et al. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane [J]. ChemCatChem, 2011, 3(3): 529-541. DOI: 10.1002/cctc. 201000358. |
[16] | PAKHARE D, SPIVEY J. A review of dry (CO2) reforming of methane over noble metal catalysts [J]. Chemical Society Reviews, 2014, 43: 7813-7837. DOI: 10.1039/C3CS60395D. |
[17] | NOURELDIN M M B, ELBASHIR N O, GABRIEL K J, et al. A process integration approach to the assessment of CO2 fixation through dry reforming [J]. ACS Sustainable Chemistry & Engineering, 2015, 3(4): 625-636. DOI: 10.1021/sc5007736. |
[18] | WANG W, GONG J L. Methanation of carbon dioxide: an overview [J]. Frontiers of Chemical Science & Engineering, 2011, 5(1): 2-10. DOI: 10.1007/s11705-010-0528-3. |
[19] | AZIZ M A A, JALIL A A, TRIWAHYONO S, et al. CO2 methanation over heterogeneous catalysts: recent progress and future prospects [J]. Green Chemistry, 2015, 17: 2647-2663. DOI: 10.1039/C5GC00119F. |
[20] | Li Y W, Chan S H, Sun Q. Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review [J]. Nanoscale, 2015, 7: 8663-8683. DOI: 10.1039/C5NR00092K. |
[21] | 何良年. 二氧化碳化学[M]. 北京: 科学出版社, 2013. |
HE L N. Carbon Dioxide Chemistry[M]. Beijing: Science Press, 2013. | |
[22] | HOCH L B, WOOD T E, O'BRIEN P G, et al. The rational design of a single-component photocatalyst for gas-phase CO2 reduction using both uv and visible light [J]. Advanced Science, 2014, 1(1): 1400013. DOI: 10.1002/advs.201400013. |
[23] | CHAKRABORTY A K, KEBEDE M A. Efficient decomposition of organic pollutants over In2O3/TiO2 nanocomposite photocatalyst under visible light irradiation [J]. Journal of Cluster Science, 2012, 23(2): 247-257. DOI: 10.1007/s10876-011-0425-z. |
[24] | YE J Y, LIU C J, GE Q F. DFT study of CO2 adsorption and hydrogenation on the In2O3 surface [J]. Journal of Physical Chemistry C, 2012, 116(14): 7817-7825. DOI: 10.1021/jp3004773. |
[25] | YE J Y, LIU C J, MEI D H, et al. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): a DFT study [J]. ACS Catalysis, 2013, 3(6): 1296-1306. DOI: 10.1021/cs400132a. |
[26] | SUN K H, FAN Z G, YE J Y, et al. Hydrogenation of CO2 to methanol over In2O3 Catalyst [J]. Journal of CO2 Utilization, 2015, 12: 1-6. DOI: 10.1016/j.jcou.2015.09.002. |
[27] | 郭秋婷. 二氧化碳加氢氧化铟催化剂实验研究[D]. 天津:天津大学,2015.GUO Qiuting. CO2 hydrogenation over In2O3[D]. Tianjin: Tianjin University, 2015. |
[28] | WANG J G, LIU C J, ZHANG Y P, et al. A DFT study of synthesis of acetic acid from methane and carbon dioxide [J]. Chemical Physics Letters, 2003, 368(3/4): 313-318. DOI: 10.1016/S0009-2614(02) 01866-3. |
[29] | ZOU J J, LIU C J. Utilization of Carbon Dioxide through Nonthermal Plasma Approaches//Carbon Dioxide as Chemical Feedstock[M]. Michele Aresta, ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010: 267-290. |
[30] | LI K, LIU J L, LI X S, et al. Post-plasma catalytic oxidative CO2 reforming of methane over Ni-based catalysts [J]. Catalysis Today, 2015, 256: 96-101. DOI: 10.1016/j.cattod.2015.03.013. |
[31] | WANG Q, WU W, CHEN J F, et al. Novel synthesis of ZnPc/TiO2 composite particles and carbon dioxide photo-catalytic reduction efficiency study under simulated solar radiation conditions [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 409: 118-125. DOI: 10.1016/j.colsurfa.2012.06.010. |
[32] | CAI W J, PISCINA P R, TOYIR J, et al. CO2 hydrogenation to methanol over CuZnGa catalysts prepared using microwave-assisted methods [J]. Catalysis Today, 2015, 242: 193-199. DOI: 10.1016/j. cattod. 2014.06.012. |
[33] | QIN Z F, REN J, MIAO M Q, et al. The catalytic methanation of coke oven gas over Ni-Ce/Al2O3 catalysts prepared by microwave heating: effect of amorphous NiO formation [J]. Applied Catalysis B: Environmental, 2015, 164: 18-30. DOI:10.1016/j.apcatb.2014.08.047. |
[34] | XIE Z Z, ZHU M Q, NAMBO A, et al. Microwave-assisted synthesized SAPO-56 as a catalyst in the conversion of CO2 to cyclic carbonates [J]. Dalton Transaction, 2013, 42: 6732-6735. DOI: 10.1039/C3DT00064H. |
[35] | NOZAKI T, NEYTS E C, SANKARAN M, et al. Plasmas for enhanced catalytic processes (ISPCEM 2014) preface [J]. Catalysis Today, 2015, 256: 1-2. |
[36] | VISSOKOV G P, PANAYOTOVA M I. Plasma-chemical synthesis and regeneration of catalysts for reforming natural gas [J]. Catalysis Today,2002, 72(3/4):213-221. DOI:10.1016/S0920-5861(01)00495-3. |
[37] | LIU C J, VISSOKOV G P, Jang B. Catalyst preparation using plasma technologies [J]. Catalysis Today, 2002, 72(3/4): 173-184. DOI: 10.1016/S0920-5861(01)00491-6. |
[38] | IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56-58. DOI: 10.1038/354056a0. |
[39] | LIU C J, ZHAO Y, LI Y Z, et al. Perspectives on electron assisted reduction for the preparation of highly dispersed noble metal catalysts [J]. ACS Sustainable Chemistry & Engineering, 2014, 2(1): 3-13. DOI: 10.1021/sc400376m. |
[40] | LIU C J, SHI P, JIANG J J, et al. Development of coke resistant Ni catalysts for CO2 reforming of methane via glow discharge plasma treatment [J]. ACS Symposium Series, 2010, 1056(11): 175-180. DOI: 10.1021/bk-2010-1056.ch011. |
[41] | GUO F, CHU W, XU H Y, et al. Glow discharge plasma-enhanced preparation of nickel-based catalyst for CO2 methanation [J]. Chinese Journal of Catalysis, 2007, 28(5): 429-434. |
[42] | ZHENG X G, TAN S Y, DONG L C, et al. Plasma-assisted catalytic dry reforming of methane: highly catalytic performance of nickel ferrite nanoparticles embedded in silica [J]. Journal of Power Sources, 2015, 274: 286-294. DOI: 10.1016/j.jpowsour.2014.10.065. |
[43] | YAN X L, ZHAO B R, LIU Y, et al. Dielectric barrier discharge plasma for preparation of Ni-based catalysts with enhanced coke resistance: current status and perspective [J]. Catalysis Today, 2015, 256: 29-40. DOI: 10.1016/j.cattod.2015.04.045. |
[44] | FAN Z G, SUN K H, RUI N, et al. Improved activity of Ni/MgAl2O4 for CO2 methanation by the plasma decomposition [J]. Journal of Energy Chemistry, 2015, 24(5): 655-659. DOI: 10.1016/j.jechem. 2015.09.004. |
[45] | LIU G H, CHU W, LONG H L, et al. A novel reduction method for Ni/gamma-Al2O3 catalyst by a high frequency cold plasma jet at atmospheric pressure [J]. Chinese Journal of Catalysis, 2007, 28(7): 582-584. DOI: 10.1016/S1872-2067(07)60048-5. |
[46] | PAN Y X, KUAI P Y, LIU Y, et al. Promotion effects of Ga2O3 on CO2 adsorption and conversion over a SiO2-supported Ni catalyst [J]. Energy Environmental Science, 2010, 3: 1322-1325. DOI: 10.1039/C0EE00149J. |
[47] | ZHOU Y, WANG Z Y, LIU C J. Perspective on CO oxidation over Pd-based catalysts [J]. Catalysis Science & Technology, 2015, 5: 69-81. DOI: 10.1039/C4CY00983E. |
[48] | YAN J M, PAN Y X, CHEETHAM A G, et al. One-step fabrication of self-assembled peptide thin films with highly dispersed noble metal nanoparticles [J]. Langmuir, 2013, 29(52): 16051-16057. DOI: 10.1021/la4036908. |
[49] | YE J Y, JOHNSON J K. Design of Lewis pair-functionalized metal organic frameworks for CO2 hydrogenation [J]. ACS Catalysis, 2015, 5(5): 2921-2928. DOI: 10.1021/acscatal.5b00396. |
[50] | YE J Y, JOHNSON J K. Screening Lewis pair moieties for catalytic hydrogenation of CO2 in functionalized UiO-66 [J]. ACS Catalysis, 2015, 5(10): 6219-6229. DOI: 10.1021/acscatal.5b01191. |
[51] | LIN S, DIERCKS C S, ZHANG Y B, et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water [J]. Science, 2015, 349(6253): 1208-1213. DOI: 10.1126/science.aac8343. |
[52] | GE Q F. Mechanistic Understanding of Catalytic CO2 Activation from First Principles Theory//In Activation of Carbon Dioxide, New and Future Developments in Catalysis [M]. Amsterdam: Elsevier, 2013: 49-79. |
[53] | GAO D F, ZHOU H, WANG J, et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles [J]. Journal of the American Chemical Society, 2015, 137(13): 4288-4291. DOI: 10.1021/jacs. 5b00046. |
[54] | WEN S P, LIANG M L, ZOU J M, et al. Synthesis of a SiO2 nanofibre confined Ni catalyst by electrospinning for the CO2 reforming of methane [J]. Journal of Materials Chemistry A, 2015, 3: 13299-13307. DOI: 10.1039/C5TA01699A. |
[1] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[6] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[7] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[8] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[9] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[10] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[11] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[12] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[13] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[14] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[15] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 2556
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 796
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||