[1] |
LARSSON M, DAHL J. Development of a method for analyzing energy, environmental and economic efficiency for an integrated steel plant[J]. Applied Thermal Engineering, 2006, 26 (13): 1353-1361.
|
[2] |
HELLE H, HELLE M, SAXEN H. Nonlinear optimization of steel production using traditional and novel blast furnace operation strategies[J]. Chemical Engineering Science, 2011, 66 (24): 6470-6481.
|
[3] |
SUOPAJARVI H, PONGRACZ E, FABRITIUS T. Bioreducer use in finish blast furnace iron making analysis of CO2 emission reduction potential and mitigation cost[J]. Applied Energy, 2014, 124 (12): 82-93.
|
[4] |
GHANBARI H, PETTERSSON F, SAXEN H. Sustainable development of primary steelmaking under novel blast furnace operation and injection of different reducing agents[J]. Chemical Engineering Science, 2015, 129 (16): 1-32.
|
[5] |
童力, 胡松涛, 罗思义. 高炉渣余热回收协同转化生物质制氢[J]. 化工学报, 2014, 65 (9): 3634-3639. TONG L, HU S T, LUO S Y. Waste heat recovery of blast furnace slag and utilization for production of hydrogen from biomass transformation[J]. CIESC Journal, 2014, 65 (9): 3634-3639.
|
[6] |
卢虎生, 刘艳春. 钢铁企业铁精粉品味的边际冶炼价值分析[J]. 内蒙古科技大学学报, 2007, 26 (4): 32-39. LU H S, LIU Y C. Marginal metal logical value of iron contents in the concentrates of iron and steel company[J]. Journal of Inner Mongo, 2007, 26 (4): 32-39.
|
[7] |
CAO W C, ZHANG J L, ZHANG T, et al. A genetic algorithm application to minimize pig iron cost[J]. ISIJ International, 2013, 53 (2): 207-212.
|
[8] |
RASUL M G, TANTY B S, MOHANTY B. Modeling and analysis of blast furnace performance for efficient utilization of energy[J]. Applied Thermal Engineering, 2007, 27 (1): 78-88.
|
[9] |
张琦, 姚彤辉, 蔡九菊. 高炉炼铁过程多目标优化模型的研究及应用[J]. 东北大学学报, 2011, 32 (2): 270-273. ZHANG Q, YAO T H, CAI J J. On the multiobjective optimal model of blast furnace iron-making process and its application[J]. Journal of Northeastern University, 2011, 32 (2): 270-273.
|
[10] |
LI H, ZHANG Q F. Multi-objective optimization problem with complicated pareto sets, MOEA/D and NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2009, 13 (2): 284-302.
|
[11] |
AUTUORI J, HNAIEN F, YALAOU F, et al. Comparison of solution space exploration by NSGA-Ⅱ and SPEA-Ⅱ for flexible job shop problem[J]. Control, Decision and Information Technologies Conference, 2013, 34 (2): 750-755.
|
[12] |
ASEFI H, JOLAI F, RABIEE M, et al. A hybrid NSGA-Ⅱ and VNS for solving a bi-objective no-wait flexible flow shop scheduling problem[J]. International Journal of Advanced Manufacturing Technology, 2014, 75 (5): 1017-1033.
|
[13] |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2): 182-197.
|
[14] |
HU C Q, HAN X W, LI Z H, et al. Comparison of CO2 emission between COREX and blast furnace iron-making system[J]. Journal of Environmental Sciences Supplement, 2009, 45 (1): 116-120.
|
[15] |
ZOU Z P, GUO X Z, WANG G, et al. Discussion of the calculation method of the BF's CO2 emission[J]. Journal of Iron and Steel Research, 2011, 27 (9): 59-64.
|
[16] |
PURWANTO H, KASAI E, AKIYAMA T. Process analysis of the effective utilization of molten slag heat by direct blast furnace cement production system[J]. ISIJ International, 2010, 50 (9): 1319-1325.
|
[17] |
ZHANG R J, LU J, ZHANG G Q. A knowledge-based multi-role decision support system for ore blending cost optimization of blast furnaces[J]. European Journal of Operational Research, 2011, 215 (1): 194-203.
|
[18] |
张宇, 鄢烈祥, 李国建, 等. 非支配排序进化策略求解煤气化多目标优化问题[J]. 化工学报, 2013, 64 (12): 4628-4633. ZHANG Y, YAN L X, LI G J, et al. Multi-objective optimization of coal gasifier using NSES[J]. CIESC Journal, 2013, 64 (12): 4628-4633.
|
[19] |
于晓栋, 吕文祥, 黄德先, 等. 基于HYSYS和NSGA-Ⅱ的常压塔多目标优化[J]. 化工学报, 2008, 59 (7): 1646-1649. YU X D, LÜ W X, HUANG D X, et al. Multi-objective optimization of industrial crude distillation unit based on HYSYS and NSGA-Ⅱ[J]. Journal of Chemical Industry and Engineering (China), 2008, 59 (7): 1646-1649.
|
[20] |
吴献东, 金晓明, 苏宏业. 基于NSGA-Ⅱ的模拟移动床色谱分离过程多目标操作优化[J]. 化工学报, 2007, 58 (8): 2038-2044. WU X D, JIN X M, SU H Y. Multi-objective optimization of simulated moving bed chromatography separation based on NSGA-Ⅱ algorithm[J]. Journal of Chemical Industry and Engineering (China), 2007, 58 (8): 2038-2044.
|