CIESC Journal ›› 2016, Vol. 67 ›› Issue (11): 4779-4786.DOI: 10.11949/j.issn.0438-1157.20160651
Previous Articles Next Articles
ZHAO Bing, WANG Zhixuan, CHEN Lu, YANG Yaqing, CHEN Fang, GAO Yang, JIANG Yong
Received:
2016-05-11
Revised:
2016-07-21
Online:
2016-11-05
Published:
2016-11-05
Supported by:
supported by the National Natural Science Foundation of China (21501119, 11575105) and the Science and Technology Committee of Shanghai (15DZ0501402).
赵兵, 王志轩, 陈卢, 杨雅晴, 陈芳, 高阳, 蒋永
通讯作者:
蒋永,jiangyong@shu.edu.cn
基金资助:
国家自然科学基金项目(21501119, 11575105);上海市科委技术标准项目(15DZ0501402)。
CLC Number:
ZHAO Bing, WANG Zhixuan, CHEN Lu, YANG Yaqing, CHEN Fang, GAO Yang, JIANG Yong. LiMnPO4/graphene nanocomposites with high electrochemical performancefor lithium-ion batteries[J]. CIESC Journal, 2016, 67(11): 4779-4786.
赵兵, 王志轩, 陈卢, 杨雅晴, 陈芳, 高阳, 蒋永. 利用表面改性制备磷酸锰锂/石墨烯锂离子电池复合材料[J]. 化工学报, 2016, 67(11): 4779-4786.
[1] | PADHI A K, NAJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4):1188-1194. |
[2] | YAMADA A, KUDO Y, LIU K Y. Reaction mechanism of the olivine-type Lix(Mn0.6Fe0.4)PO4(0≤x≤1)[J]. Journal of the Electrochemical Society, 2001, 148(7):747-754. |
[3] | DELACOUT C, LAFFONT L, BOUCHET R, et al. Toward understanding of electrical limitations (electronic, ionic) in LiMPO4(M=Fe, Mn) electrode materials[J]. Journal of the Electrochemical Society, 2005, 152(5):913-921. |
[4] | KANG B, CEDER G. Battery materials for ultrafast charging and discharging[J]. Nature, 2009, 458(7235):190-193. |
[5] | ZHAO B, JIANG Y, ZHANG H, et al. Morphology and electrical properties of carbon coated LiFePO4 cathode materials[J]. Journal of Power Sources, 2009, 189(1):462-466. |
[6] | ZHOU F, COCOCCIONI M, KANG K, et al. The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M=Fe, Mn, Co, Ni[J]. Electrochemistry Communications, 2004, 6(11):1144-1148. |
[7] | YONEMURA M, YAMADA A, TAKEI Y, et al. Comparative kinetic study of olivine LixMPO4(M=Fe, Mn)[J]. Journal of the Electrochemical Society, 2004, 151(9):1352-1356. |
[8] | KÖNTJE M, MEMM M, AXMANN P, et al. Substituted transition metal phospho olivines LiMM'PO4(M=Mn, M'=Fe, Co, Mg):optimisation routes for LiMnPO4[J]. Journal of Solid State Chemistry, 2014, 42(4):106-117. |
[9] | HONG Y, TANG Z, ZHANG Z. Enhanced electrochemical properties of LiMnPO4/C composites by tailoring polydopamine-derived carbon coating[J]. Electrochimica Acta, 2015, 176:369-377. |
[10] | DELACOURT C, POIZOT P, MORCRETTE M, et al. One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders[J]. Chemistry of Materials, 2004, 16(1):93-99. |
[11] | KWON N H, FROMNM K M. Enhanced electrochemical performance of 4 nanorods with a reduced amount of carbon as a cathode for lithium ion batteries[J]. Electrochimica Acta, 2012, 69:38-44. |
[12] | KOU L, CHEN F, TAO F, et al. High rate capability and cycle performance of Ce-doped LiMnPO4/C via an efficient solvothermal synthesis in water/diethylene glycol system[J]. Electrochimica Acta, 2015, 173:721-727. |
[13] | WANG C, BI Y, LIU Y, et al. Investigation of (1-x)LiMnPO4·xLi3V2(PO4)3/C:phase composition and electrochemical performance[J]. Journal of Power Sources, 2014, 263(1):332-337. |
[14] | WANG H L, YANG Y, LIANG Y Y, et al. LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries[J]. Angewandte Chemie International Edition, 2011, 50(32):7364-7368. |
[15] | WANG D, OUYANG C, DREZEN T I, et al. Improving the electrochemical activity of LiMnPO4 via Mn-site substitution[J]. Journal of the Electrochemical Society, 2010, 157(2):225-229. |
[16] | YANG X, MI Y, ZHANG W, et al. Enhanced electrochemical performance of LiFe0.6Mn0.4PO4/C cathode material prepared by ferrocene-assisted calcination process[J]. Journal of Power Sources, 2015, 275(1):823-830. |
[17] | SU J, LIU Z, LONG Y, et al. Enhanced electrochemical performance of LiMnPO4/C prepared by microwave-assisted solvothermal method[J]. Electrochimica Acta, 2015, 173(10):559-565. |
[18] | MURUGAN A V, MURALIGANTH T, MANTHIRAM A. One-pot microwave-hydrothermal synthesis and characterization of carbon-coated LiMPO4(M=Mn, Fe, and Co) cathodes[J]. Journal of the Electrochemical Society, 2009, 156(2):79-83. |
[19] | QIN Z, ZHOU X, XIA Y, et al. Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries[J]. Journal of Materials Chemistry, 2012, 22:21144-21153. |
[20] | DUAN J, CAO Y, JIANG J, et al. Novel efficient synthesis of nanosized carbon coated LiMnPO4 composite for lithium ion batteries and its electrochemical performance[J]. Journal of Power Sources, 2014, 268(5):146-152. |
[21] | GU Y, WANG H, ZHU Y, et al. Hydrothermal synthesis of 3D-hierarchical hemoglobin-like LiMnPO4 microspheres as cathode materials for lithium ion batteries[J]. Solid State Ionics, 2015, 274:106-110. |
[22] | ZHANG W, SHAN Z, ZHU K. et al. LiMnPO4 nanoplates grown via a facile surfactant-mediated solvothermal reaction for high-performance Li-ion batteries[J]. Electrochimica Acta, 2015, 153(20):385-392. |
[23] | LIU T, XIA Q, LU W, et al. A novel method of preparing LiMPO4-C nano particles with organic P source[J]. Electrochimica Acta, 2015, 174(20):120-126. |
[24] | WANG Y, YANG Y, YANG Y, et al. Enhanced electrochemical performance of unique morphological LiMnPO4 cathode material prepared by solvothermal method[J]. Solid State Communications, 2010, 150(1/2):81-85. |
[25] | ZHENG J, NI L, LU Y, et al. High-performance, nanostructure LiMnPO4/C composites synthesized via one-step solid state reaction[J]. Journal of Power Sources, 2015, 282(15):444-451. |
[26] | LIU Y, LIU P, WU D, et al. Boron-doped, carbon-coated SnO2 /graphene nanosheets for enhanced lithium storage[J]. Chemistry A European Journal, 2015, 21(14):5617-5622. |
[27] | HAN S, ZHAO Y, TANG Y, et al. Ternary MoS2/SiO2/graphene hybrids for high-performance lithium storage[J]. Carbon, 2015, 81:203-209. |
[28] | FATHOLLAHI F, JAVANBAKHT M, OMIDVAR H, et al. LiFePO4/C composite cathode via CuO modified graphene nanosheets with enhanced electrochemical performance[J]. Journal of Alloys and Compounds, 2015, 643(15):40-48. |
[29] | JIANG Y, XU W, CHEN D, et al. Graphene modified Li3V2(PO4)3 as a high-performance cathode material for lithium ion batteries[J]. Electrochimica Acta, 2012, 85(15):377-383. |
[30] | JIANG Y, LIU R, XU W, et al. A novel graphene modified LiMnPO4 as a performance-improved cathode material for lithium-ion batteries[J]. Journal of Materials Research, 2013, 28(18):2584-2589. |
[31] | JIANG Y, LU M, LING X, et al. One-step hydrothermal synthesis of three-dimensional porous graphene aerogels/sulfur nanocrystals for lithium-sulfur batteries[J]. Journal of Alloys and Compounds, 2015, 645(5), 509-516. |
[32] | ZHAO B, LIU R, CAI X, et al. Nanorod-like Fe2O3/graphene composite as a high-performance anode material for lithium ion batteries[J]. Journal of Applied Electrochemistry, 2014, 44(1):53-60. |
[33] | ZHU J, HE J. Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors[J]. ACS Applied Materials & Interfaces, 2012, 4(3):1770-1776. |
[34] | ZHANG Y, LIU Y, FU S, et al. Hydrothermally controlled growth of MnPO4·H2O single-crystal rods[J]. Bulletin of the Chemical Society of Japan, 2006, 79:270-275. |
[35] | LIU C, WU X, WU W, et al. Preparation of nanocrystalline LiMnPO4 via a simple and novel method and its isothermal kinetics of crystallization[J]. Journal of Materials Science, 2011, 46(8):2474-2478. |
[36] | DING Y, JIANG Y, XU F, et al. Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method[J]. Electrochemistry Communications, 2010, 12(1):10-13. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[3] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[4] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[5] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[6] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[7] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[8] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[9] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[10] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[11] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[12] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[13] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[14] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[15] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 326
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 301
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||