CIESC Journal ›› 2017, Vol. 68 ›› Issue (5): 1743-1756.DOI: 10.11949/j.issn.0438-1157.20161787
Previous Articles Next Articles
SUN Yi, YU Liliang, HUANG Haobing, YANG Jiawei, CHENG Shao'an
Received:
2016-12-22
Revised:
2017-02-01
Online:
2017-05-05
Published:
2017-05-05
Supported by:
supported by the National Natural Science Foundation of China (51278448, 51478414) and the National Key Research and Development Plan (2016YFB0600505).
孙怡, 于利亮, 黄浩斌, 羊家威, 成少安
通讯作者:
成少安
基金资助:
国家自然科学基金项目(51278448,51478414);国家重点研发计划项目(2016YFB0600505)。
CLC Number:
SUN Yi, YU Liliang, HUANG Haobing, YANG Jiawei, CHENG Shao'an. Research trend and practical development of advanced oxidation process on degradation of recalcitrant organic wastewater[J]. CIESC Journal, 2017, 68(5): 1743-1756.
孙怡, 于利亮, 黄浩斌, 羊家威, 成少安. 高级氧化技术处理难降解有机废水的研发趋势及实用化进展[J]. 化工学报, 2017, 68(5): 1743-1756.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20161787
[1] | RIBEIRO A R, NUNE O C, PEREIRA M F, et al. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU[J]. Environment International, 2015, 75: 33-51. |
[2] | OLLER I, MALATO S, SANCHEZ-PEREZ J A. Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review[J]. Science of the Total Environment, 2011, 409(20): 4141-4166. |
[3] | HAPEMAN C J, TORRENS A. Direct radical oxidation process[M]//KEARNEY K, ROBERT T. Pesticide Remediation Soils and Water. New York: Wiley, 1998: 61-180. |
[4] | ANGLADA A, URTIAGA A, ORTIZ I. Pilot scale performance of the electro-oxidation of landfill leachate at boron-doped diamond anodes[J]. Environmental Science & Technology, 2009, 43(6): 2035-2040. |
[5] | GERRITY D, GAMAGE S, HOLADY J C, et al. Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection[J]. Water Research, 2011, 45(5): 2155-2165. |
[6] | PEREIRA M C, OLIVEIRAl L C A, MURAD E. Iron oxide catalysts: Fenton and Fenton-like reactions—a review[J]. Clay Minerals, 2012, 47(3): 3713-3722. |
[7] | NAWROCKI J, KASPRZYK-HORDERN B. The efficiency and mechanisms of catalytic ozonation[J]. Applied Catalysis B Environmental, 2010, 99(1/2): 27-42. |
[8] | BRILLAS E, MARTINEZ-HUITLE C A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review[J]. Applied Catalysis B Environmental, 2015, s166/167: 603-643. |
[9] | EREN Z. Ultrasound as a basic and auxiliary process for dye remediation: a review[J]. Journal of Environmental Management, 2012, 104(104): 127-41. |
[10] | KIM K H, IHM S K. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review[J]. Journal of Hazardous Materials, 2011, 186(1): 16-34. |
[11] | PAOLA A D, GARCIA-LOPEZ E, MARCI G, et al. A survey of photocatalytic materials for environmental remediation[J]. Journal of Hazardous Materials, 2012, s211/212(2): 3-29. |
[12] | WANG L J, XU J L. Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application[J]. Critical Reviews in Environmental Science & Technology, 2012, 42(3): 251-325. |
[13] | MAGUREANU M, MANDACHE N B, PARVULESCU V I. Degradation of pharmaceutical compounds in water by non-thermal plasma treatment[J]. Water Research, 2010, 44(11): 3445-3453. |
[14] | TIJANI J O, FATOBA O O, MADZIVIRE G, et al. A review of combined advanced oxidation technologies for the removal of organic pollutants from water[J]. Water Air & Soil Pollution, 2014, 225(2102): 1-30. |
[15] | MAGUREANU M, DOBRIN D, MANADACHE N B, et al. The mechanism of plasma destruction of enalapril and related metabolites in water[J]. Plasma Processes & Polymers, 2013, 10(5): 459-468. |
[16] | REDDY P M K, RAJU B R, KARUPPIAH J, et al. Degradation and mineralization of methylene blue by dielectric barrier discharge non-thermal plasma reactor[J]. Chemical Engineering Journal, 2013, 217(1): 41-47. |
[17] | SANO N, YAMANE Y, HORI Y, et al. Application of multiwalled carbon nanotubes in a wetted-wall corona-discharge reactor to enhance phenol decomposition in water[J]. Industrial & Engineering Chemistry Research, 2011, 50(17): 9901-9909. |
[18] | REN J Y, WANG T C, QU G Z, et al. Evaluation and optimization of electrode configuration of multi-channel corona discharge plasma for dye-containing wastewater treatment[J]. Plasma Science & Technology, 2015, 17(12): 1053-1060. |
[19] | DOBRIN D, MAGUREANU M, BRADU C, et al. Degradation of methylparaben in water by corona plasma coupled with ozonation[J]. Environmental Science & Pollution Research International, 2014, 21(21): 12190-7. |
[20] | DORBRIN D, BRADU C, MAGUREANU M, et al. Degradation of diclofenac in water using a pulsed corona discharge[J]. Chemical Engineering Journal, 2013, 234(19): 389-396. |
[21] | LIU Y, WANG D, BING S, et al. Aqueous 4-nitrophenol decomposition and hydrogen peroxide formation induced by contact glow discharge electrolysis[J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 1010-5. |
[22] | BUDIKANIA T, IBRAHIM, FEBIYANTI I A, et al. Degradation of linear alkylbenzene sulfonate with contact glow discharge electrolysis[C]//AIP Publishing LLC: HADIYANTO, 2015: 125-133. |
[23] | NARENGERILE, YUAN M H, WATANABE T. Decomposition mechanism of phenol in water plasmas by DC discharge at atmospheric pressure[J]. Chemical Engineering Journal, 2011, 168(3): 985-993. |
[24] | KRISHNA S, MASLANI A, IZDEBSKI T, et al. Degradation of Verapamil hydrochloride in water by gliding arc discharge[J]. Chemosphere, 2016, 152: 47-54. |
[25] | LESAGE O, FALK L, TATOULIAN M, et al. Treatment of 4-chlorobenzoic acid by plasma-based advanced oxidation processes[J]. Chemical Engineering & Processing, 2013, 72(7): 82-89. |
[26] | FENG X, YAN B, YANG Q, et al. Gas-liquid dielectric barrier discharge falling film reactor for the decoloration of dyeing water[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(2): 431-438. |
[27] | REDDY P, MAHAMMADUNNISA S, SUBRAHMANYAM C. Catalytic non-thermal plasma reactor for mineralization of endosulfan in aqueous medium: a green approach for the treatment of pesticide contaminated water[J]. Chemical Engineering Journal, 2014, 238(4): 157-163. |
[28] | RONG S, SUN Y, ZHAO Z, et al. Dielectric barrier discharge induced degradation of diclofenac in aqueous solution[J]. Water Science & Technology, 2014, 69(1): 76-83. |
[29] | LESAGE O, FALK L, TATOULIAN M, et al. Treatment of 4-chlorobenzoic acid by plasma-based advanced oxidation processes[J]. Chemical Engineering & Processing, 2013, 72(7): 82-89. |
[30] | 陈杰瑢. 低温等离子体化学及其应用[M]. 北京: 科学出版社, 2001. CHEN J R. Low Temperature Plasma Chemistry and Its Applications [M]. Beijing: Science Press, 2001. |
[31] | MOUELE E S, TIJANI J O, FATOBA O O, et al. Degradation of organic pollutants and microorganisms from wastewater using different dielectric barrier discharge configurations—a critical review.[J]. Environmental Science and Pollution Research, 2015, 22(23): 18345-18362. |
[32] | KRISHNA S, MASLANI A, IZDEBSKI T, et al. Degradation of Verapamil hydrochloride in water by gliding arc discharge[J]. Chemosphere, 2016, 152: 47-54. |
[33] | VANRAES P, WILLEMS G, NIKIFOROV A, et al. Removal of atrazine in water by combination of activated carbon and dielectric barrier discharge[J]. Journal of Hazardous Materials, 2015, 299: 647-655. |
[34] | BO J, ZHENG J, SHI Q, et al. Review on electrical dis charge plasma technology for wastewater remediation[J]. Chemical Engineering Journal, 2014, 236(2): 348-368. |
[35] | HE D, SUN Y, LI S, et al. Decomposition of tetracycline in aqueous solution by corona discharge plasma combined with a Bi2MoO6 nanocatalyst[J]. Journal of Chemical Technology & Biotechnology, 2014, 90(12): 2249-2256. |
[36] | FAGAN R, MCCORMACK D E, DIONYSIOU D D, et al. A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern[J]. Materials Science in Semiconductor Processing, 2016, 42: 2-14. |
[37] | ALALM M G, TAWFIK A, OOKAWARA S. Solar photocatalytic degradation of phenol by TiO/AC prepared by temperature impregnation method[J]. Desalination & Water Treatment, 2016, 57(2): 835-844. |
[38] | LI F, KANG Y, CHEN M, et al. Photocatalytic degradation and removal mechanism of ibuprofen via monoclinic BiVO4 under simulated solar light[J]. Chemosphere, 2016, 150: 139-144. |
[39] | LI J, ZHONG J, SI Y, et al. Improved solar-driven photocatalytic performance of BiOI decorated TiO2 benefiting from the separation properties of photo-induced charge carriers[J]. Solid State Sciences, 2016, 52: 106-111. |
[40] | DENG W, CHEN D, HU J, et al. A general and green approach to synthesize monodisperse ceria hollow spheres with enhanced photocatalytic activity[J]. RSC Advances, 2015, 5(98): 80158-80169. |
[41] | KONSTANTINOS C C, TIZIANO M, ELZA B, et al. Synthesis and photocatalytic application of visible-light active β-Fe2O3/g-C3N4 hybrid nanocomposites[J]. Applied Catalysis B Environmental, 2016, 187: 171-180. |
[42] | BENHABILES O, MAHMOUDI H, LOUNICI H, et al. Effectiveness of a photocatalytic organic membrane for solar degradation of methylene blue pollutant[J]. Desalination & Water Treatment, 2015, 57(30): 14067-14076. |
[43] | SARAVANAKUMA K, RAMIAN M M, SURESH P, et al. Fabrication of highly efficient visible light driven Ag/CeO2 photocatalyst for degradation of organic pollutants[J]. Journal of Alloys and Compounds, 2016, 664: 149-160. |
[44] | OFIARSKA A, PIECZYNSKA A, BORZYSZKOWSKA A F, et al. Pt-TiO2-assisted photocatalytic degradation of the cytostatic drugs ifosfamide and cyclophosphamide under artificial sunlight[J]. Chemical Engineering Journal, 2016, 285: 417-427. |
[45] | YANG G, WANG T, YANG B, et al. Enhanced visible-light activity of F-N co-doped TiO2, nanocrystals via nonmetal impurity, Ti3+ ions and oxygen vacancies[J]. Applied Surface Science, 2013, 287(24): 135-142. |
[46] | ZHAO X, CAI Z, WANG T, et al. A new type of cobalt-deposited titanate nanotubes for enhanced photocatalytic degradation of phenanthrene[J]. Applied Catalysis B Environmental, 2016, 187: 134-143. |
[47] | ZHAO Z, SUN Y, DONG F. Graphitic carbon nitride based nanocomposites: a review[J]. Nanoscale, 2015, 7(1): 15-37. |
[48] | GRABOWSKA E. Selected perovskite oxides: characterization, preparation and photocatalytic properties—a review[J]. Applied Catalysis B Environmental, 2015, 186: 97-126. |
[49] | KUBACKA A, FERNANDEZ-GARCIA M, COLON G. Advanced nanoarchitectures for solar photocatalytic applications[J]. Chemical Reviews, 2012, 112(3): 1555-614. |
[50] | ZHANG J, WANG B, LI C, et al. Synthesis of novel CeO2-BiVO4/FAC composites with enhanced visible-light photocatalytic properties[J]. Journal of Environmental Sciences, 2014, 26(9): 1936-1942. |
[51] | FENG C H, LI F B, MAI H J, et al. Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment[J]. Environmental Science & Technology, 2010, 44(5): 1875-1880. |
[52] | HUANG L, CHENG S, CHEN G. Bioelectrochemical systems for efficient recalcitrant wastes treatment[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(4): 481-491. |
[53] | WANF H, REN Z J. A comprehensive review of microbial electrochemical systems as a platform technology[J]. Biotechnology Advances, 2013, 31(8): 1796-1807. |
[54] | GUO X, ZHAN Y, CHEN C, et al. Simultaneous bioelectricity generation and biodegradability improvement of refinery wastewater using microbial fuel cell technology[J]. Desalination and Water Treatment, 2015, 53(10): 2740-2745. |
[55] | ZENG X, BOROLE A P, PAVLOSTATHIS S G. Biotransformation of furanic and phenolic compounds with hydrogen gas production in a microbial electrolysis cell[J]. Environmental Science & Technology, 2015, 49(22): 13667-13675. |
[56] | PRADHAN H, JAIN S C, GHANGREKAR M M. Simultaneous removal of phenol and dissolved solids from wastewater using multichambered microbial desalination cell[J]. Applied Biochemistry & Biotechnology, 2015, 177(8): 1638-1653. |
[57] | NAN X, ZHANG Y, TAO H, et al. Bio-electro-Fenton system for enhanced estrogens degradation[J]. Bioresource Technology, 2013, 138(6): 136-140. |
[58] | LI Z, ZHOU S, YUAN Y, et al. A novel bioelectro-Fenton system for coupling anodic COD removal with cathodic dye degradation[J]. Chemical Engineering Journal, 2010, 163(1): 160-163. |
[59] | FENG C, LI F, LIU H, et al. A dual-chamber microbial fuel cell with conductive film-modified anode and cathode and its application for the neutral electro-Fenton process[J]. Electrochimica Acta, 2010, 55(6): 2048-2054. |
[60] | LING T, HUANG B, ZHAO M, et al. Repeated oxidative degradation of methyl orange through bio-electro-Fenton in bioelectrochemical system (BES)[J]. Bioresource Technology, 2016, 203: 89-95. |
[61] | COMNINELLIS C, KAPALKA A, MALATO S, et al. Advanced oxidation processes for water treatment: advances and trends for R&D[J]. Journal of Chemical Technology & Biotechnology, 2008, 83(6): 769-776. |
[62] | HARICHANDRAN G. Sono-Fenton degradation of an azo dye, Direct Red[C]//PRASAD S. Proceedings of the IEEE Conference on Decision & Control. Institute of Electrical and Electronics Engineers, 2016, 29: 178-185. |
[63] | BOLOBAIEV J, TRAPIDO M, GOI A. Effect of iron ion on doxycycline photocatalytic and Fenton-based autocatatalytic decomposition[J]. Chemosphere, 2016, 153: 220-226. |
[64] | RIBEIRO K, ANDRADE T M D, FUJIWARA S T. Preparation and application of cellulose acetate/Fe films in the degradation of Reactive Black 5 dye through photo-Fenton reaction[J]. Environmental Technology, 2016, 37(13): 1664-1675. |
[65] | YAHYA M S, KARBANE M E, OTURAN N, et al. Mineralization of the antibiotic levofloxacin in aqueous medium by electro-Fenton process: kinetics and intermediates products analysis[J]. Environmental Technology, 2016, 37(10): 1276-1287. |
[66] | ALEXANDER J C, RAMIREZCORTINA C R. A comparative study: degradation of 2, 5-dichlorophenol in wastewater and distilled water by ozone and ozone-UV[J]. Ozone Science & Engineering, 2015, 38(3): 181-193. |
[67] | BUYUKADA M. Modeling of decolorization of synthetic reactive dyestuff solutions with response surface methodology by a rapid and efficient process of ultrasound-assisted ozone oxidation[J]. Desalination & Water Treatment, 2016, 57(32): 14973-14985. |
[68] | SOLIS R R, RIVAS F J, MARTINEZ-PIERNAS A, et al. Ozonation, photocatalysis and photocatalytic ozonation of diuron. Intermediates identification[J]. Chemical Engineering Journal, 2016, 292: 72-81. |
[69] | ERTUGAY N, ACAR F N. Decolorization of Direct Blue 71 using UV irradiation and ultrasound in the presence of TiO2 catalyst[J]. Desalination & Water Treatment, 2016, 57(20): 9318-9324. |
[70] | BALACHANDRAN R, PATTERSON Z, DEYMIER P, et al. Understanding acoustic cavitation for sonolytic degradation of p-cresol as a model contaminant.[J]. Chemosphere, 2016, 147: 52-59. |
[71] | NADDEO V, UYGUNER-DEMIREL C S, PRADO M, et al. Enhanced ozonation of selected pharmaceutical compounds by sonolysis[J]. Environmental Technology, 2015, 36(13-16): 1-23. |
[72] | SANTANA-MARTINERZ G, ROA-MORALES G, CAMPO E M D, et al. Electro-Fenton and Electro-Fenton-like with in situ electrogeneration of H2O2 and catalyst applied to 4-chlorophenol mineralization[J]. Electrochimica Acta, 2016, 195: 246-256. |
[73] | SOUZA F L, SAEZ C, LLANO J, et al. Solar-powered CDEO for the treatment of wastewater polluted with the herbicide 2, 4-D[J]. Chemical Engineering Journal, 2015, 277: 64-69. |
[74] | JYOTHI K P, YESODHARAN S, YESODHARAN E P. Ultrasound (US), ultraviolet light (UV) and combination (US+UV) assisted semiconductor catalysed degradation of organic pollutants in water: oscillation in the concentration of hydrogen peroxide formed in situ[J]. Ultrasonics Sonochemistry, 2014, 21(5): 1787-1796. |
[75] | ZAPATA A, MALATO S, SANCHEZ-PEREZ J A, et al. Scale-up strategy for a combined solar photo-Fenton/biological system for remediation of pesticide-contaminated water[J]. Catalysis Today, 2010, 151(1/2): 100-106. |
[76] | TORRES-SOCIAS D E, PRIETO-RODRIGUEZ L, ZAPATA A, et al. Detailed treatment line for a specific landfill leachate remediation. Brief economic assessment[J]. Chemical Engineering Journal, 2015, 261: 60-66. |
[77] | SILVA T F C V, FONSECA A, SARAIVA I, et al. Scale-up and cost analysis of a photo-Fenton system for sanitary landfill leachate treatment[J]. Chemical Engineering Journal, 2016, 283: 76-88. |
[78] | SANTIAGO D E, ARANA J, GONZALEZDIA O, et al. Treatment of wastewater containing imazalil by means of Fenton-based processes[J]. Desalination & Water Treatment, 2015, 57(30): 1-13. |
[79] | YANG B, ZUO J, LI P, et al. Effective ultrasound electrochemical degradation of biological toxicity and refractory cephalosporin pharmaceutical wastewater[J]. Chemical Engineering Journal, 2016, 287: 30-37. |
[80] | MORAVIA W G, AMARAL M C S, LANGE L C. Evaluation of landfill leachate treatment by advanced oxidative process by Fenton's reagent combined with membrane separation system[J]. Waste Management, 2013, 33(1): 89-101. |
[81] | CORTEZ S, TEIXEIRA P, OLIVERIRA R, et al. Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments[J]. Journal of Environmental Management, 2011, 92(3): 749-755. |
[82] | MAHMUD K, HOSSAIN M D, SHAMS S. Different treatment strategies for highly polluted landfill leachate in developing countries[J]. Waste Management, 2011, 32(11): 2096-2105. |
[83] | ZOU H, MA W, WANG Y. A novel process of dye wastewater treatment by linking advanced chemical oxidation with biological oxidation[J]. Archives of Environmental Protection, 2015, 41(4): 33-39. |
[84] | NJIKI A, KAMGANG-YOUBI G, LAMINSI S, et al. Gliding arc discharge-assisted biodegradation of crystal violet in solution with Aeromonas hydrophila strain[J]. International Journal of Environmental Science and Technology, 2016, 1(13): 263-274. |
[85] | TAMARA B B, ISLA M A, ALFANO O M. Combined chemical oxidation and biological processes for herbicide degradation[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(3): 718-725. |
[86] | MENG N C, BO J, CHOW C W K, et al. Recent developments in photocatalytic water treatment technology: a review[J]. Water Research, 2010, 44(10): 2997-3027. |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[3] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[4] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[5] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[6] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[7] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[8] | Lixiang ZHU, Moye LUO, Xiaodong ZHANG, Tao LONG, Ran YU. Application of quinone profile method to indicate structure and activity of functional microbial community in trichloroethylene-contaminated soil [J]. CIESC Journal, 2023, 74(6): 2647-2654. |
[9] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[10] | Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox [J]. CIESC Journal, 2023, 74(5): 2147-2156. |
[11] | Yurong DANG, Chunlan MO, Kerui SHI, Yingcong FANG, Ziyang ZHANG, Zuoshun LI. Comprehensive evaluation model combined with genetic algorithm for the study on the performance of ORC system with zeotropic mixture [J]. CIESC Journal, 2023, 74(5): 1884-1895. |
[12] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
[13] | Yangguang LYU, Peipei ZUO, Zhengjin YANG, Tongwen XU. Triazine framework polymer membranes for methanol/n-hexane separation via organic solvent nanofiltration [J]. CIESC Journal, 2023, 74(4): 1598-1606. |
[14] | Yulong HUANG, Fan LYU, Junjie QIU, Hua ZHANG, Pinjing HE. Physicochemical properties and VOCs molecular characteristics of liquid digestate from anaerobic digestion of putrescible waste [J]. CIESC Journal, 2023, 74(3): 1275-1285. |
[15] | Feng WANG, Shunxin ZHANG, Fangbo YU, Ya LIU, Liejin GUO. Optimization strategy for producing carbon based fuels by photocatalytic CO2 reduction [J]. CIESC Journal, 2023, 74(1): 29-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||