CIESC Journal ›› 2018, Vol. 69 ›› Issue (6): 2526-2532.DOI: 10.11949/j.issn.0438-1157.20171364
Previous Articles Next Articles
LI Yannan, CHENG Jun, LIU Jianzhong, ZHOU Junhu, CEN Kefa
Received:
2017-10-12
Revised:
2018-01-07
Online:
2018-06-05
Published:
2018-06-05
Supported by:
supported by the National Key Research and Development Program of China (2016YFE0117900) and the Key Research and Development Program of Zhejiang Province (2017C04001).
李艳南, 程军, 刘建忠, 周俊虎, 岑可法
通讯作者:
程军
基金资助:
国家重点研发计划项目(2016YFE0117900);浙江省重点研发计划项目(2017C04001)。
CLC Number:
LI Yannan, CHENG Jun, LIU Jianzhong, ZHOU Junhu, CEN Kefa. CO2removal from biohythane by absorption in ionic liquid[P66614][Triz]loaded on molecular sieve SBA-15[J]. CIESC Journal, 2018, 69(6): 2526-2532.
李艳南, 程军, 刘建忠, 周俊虎, 岑可法. 分子筛SBA-15负载离子液体[P66614][Triz]脱除氢烷气中CO2[J]. 化工学报, 2018, 69(6): 2526-2532.
[1] | DING L K, CHENG J, YUE L C, et al. Fermentative hydrogen and methane co-production from pretreated Spartina anglica biomass with optimal saccharification effect under acid/alkali-assisted steam/microwave heating and enzymolysis[J]. Energy Conversion and Management, 2016, 127:554-560. |
[2] | DING L K, CHENG J, QIAO D, et al. Investigating hydrothermal pretreatment of food waste for two-stage fermentative hydrogen and methane co-production[J]. Bioresource Technology, 2017, 241:491-499. |
[3] | CHENG J, DING L K, LIN R C, et al. Physicochemical characterization of typical municipal solid wastes for fermentative hydrogen and methane co-production[J]. Energy Conversion and Management, 2016, 117:297-304. |
[4] | XIA A, CHENG J, DING L K, et al. Improvement of the energy conversion efficiency of Chlorella pyrenoidosa biomass by a three-stage process comprising dark fermentation, photofermentation, and methanogenesis[J]. Bioresource Technology, 2013, 146(146C):436-443. |
[5] | XIA A, CHENG J, DING L K, et al. Enhancement of energy production efficiency from mixed biomass of Chlorella pyrenoidosa and cassava starch through combined hydrogen fermentation and methanogenesis[J]. Applied Energy, 2014, 120(120):23-30. |
[6] | MA F H, WANG Y F, DING S F, et al. Twenty percent hydrogen-enriched natural gas transient performance research[J]. International Journal of Hydrogen Energy, 2009, 34(15):6523-6531. |
[7] | MA F H, WANG M Y, JIANG L, et al. Performance and emission characteristics of a turbocharged CNG engine fueled by hydrogen-enriched compressed natural gas with high hydrogen ratio[J]. International Journal of Hydrogen Energy, 2010, 35(12):6438-6447. |
[8] | HADRI N E, DANG V Q, GOETHEER E L V, et al. Aqueous amine solution characterization for post-combustion CO2 capture process[J]. Applied Energy, 2017, 185:1433-1449. |
[9] | BEMHARDSEN I M, KNUUTILA H K. A review of potential amine solvents for CO2 absorption process:absorption capacity, cyclic capacity and pKa[J]. International Journal of Greenhouse Gas Control, 2017, 61:27-48. |
[10] | VAIDYA P D, KENIG E Y. CO2-alkanolamine reaction kinetics:a review of recent studies[J]. Chemical Engineering & Technology, 2010, 30(11):1467-1474. |
[11] | SHI H C, NAAMI A, IDEM R, et al. International catalytic and noncatalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents[J]. International Journal of Greenhouse Gas Control, 2014, 26(7):39-50. |
[12] | REY A, GOUEDARD C, LEDIRAC N, et al. Amine degradation in CO2 capture(Ⅱ):New degradation products of MEA. Pyrazine and alkylpyrazines:analysis, mechanism of formation and toxicity[J]. International Journal of Greenhouse Gas Control, 2013,19(11):576-583. |
[13] | PEARSON P, HOLLENKAMP A F, MEULEMAN E. Electrochemical investigation of corrosion in CO2capture plants-influence of amines[J]. Electrochimica Acta, 2013, 110(6):511-516. |
[14] | HASIB-UR-RAHMAN M, SIAJ M, LARACHI F. Ionic liquids for CO2 capture-development and progress[J]. Chemical Engineering and Processing, 2010, 49(4):313-322. |
[15] | ZHANG X P, ZHANG X C, DONG H F, et al. Carbon capture with ionic liquids:overview and progress[J]. Energy & Environmental Science, 2012, 5(5):6668-6681. |
[16] | WANG C M, LUO X Y, ZHU X, et al. The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids[J]. RSC Advances, 2013,3(36):15518-15527. |
[17] | 刘维伟, 胡松, 陈文, 等. 功能型离子液体的合成表征及CO2吸收性能[J]. 化工学报, 2012, 63(1):139-145. LIU W W, HU S, CHEN W, et al. Synthesis and identification of functional ionic liquids and research on its performance of CO2 absorption[J]. CIESC Journal, 2012, 63(1):139-145. |
[18] | 陈义峰, 王昌松, 丁键, 等. 负载[APMIm] [Br]离子液体吸收CO2的性能[J]. 化工学报, 2014, 65(5):1716-1720. CHEN Y F, WANG C S, DING J, et al. CO2 absorption properties of supported[APMIm] [Br] [J]. CIESC Journal, 2014, 65(5):1716-1720. |
[19] | ZHU J M, XIN F, HUANG J H, et al. Adsorption and diffusivity of CO2 in phosphonium ionic liquid modified silica[J]. Chemical Engineering Journal, 2014, 246(246):79-87. |
[20] | RUCKART K N, O'BRIEN R A, WOODARD S M, et al. Porous solids impregnated with task-specific ionic liquids as composite sorbents[J]. Journal of Physical Chemistry C, 2015, 119(35):20681-20697. |
[21] | HIREMATH V, JADHAV A H, LEE H, et al. Highly reversible CO2 capture using amino acid functionalized ionic liquids immobilized on mesoporous silica[J]. Chemical Engineering Journal, 2016, 287:602-617. |
[22] | REN J, WU L B, LI B G. Preparation and CO2 sorption/desorption of N-(3-aminopropyl) aminoethyl tributylphosphonium amino acid salt ionic liquids supported into porous silica particles[J]. Industrial & Engineering Chemistry Research, 2012,51(23):7901-7909. |
[23] | WANG X F, AKHMEDOV N G, DUAN Y H, et al. Amino acid-functionalized ionic liquid solid sorbents for post-combustion carbon capture[J]. ACS Applied Materials & Interfaces, 2013, 5(17):8670-8677. |
[24] | 杨娜, 王睿. 固载氨基化离子液体的制备及其对CO2的吸附性能[J]. 化工学报, 2013,64(S1):128-132. YANG N, WANG R. Preparation of supported amino-ionic liquid and its CO2 adsorption capacity[J]. CIESC Journal, 2013,64(S1):128-132. |
[25] | 刘之琳, 滕阳, 张锴, 等. 不同有机胺修饰MCM-41的CO2吸附性能和热稳定性[J]. 燃料化学学报, 2013, 41(4):469-476. LIN Z L, TENG Y, ZHANG K, et al. CO2 adsorption properties and thermal stability of different amine-impregnated MCM-41 materials[J]. Journal of Fuel Chemistry and Technology, 2013, 41(4):469-476. |
[26] | ZELENAK V, BADANICOVA M, HALAMOVA D, et al. Amine-modified ordered mesoporous silica:effect of pore size on carbon dioxide capture[J]. Chemical Engineering Journal, 2008, 144(2):336-342. |
[27] | WANG L, YAO M, HU X, et al. Amine-modified ordered mesoporous silica:the effect of pore size on CO2 capture performance[J]. Applied Surface Science, 2015, 324:286-292. |
[28] | YAN X, ZHANG L, ZHANG Y, et al. Amine-modified SBA-15:effect of pore structure on the performance for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2011,50(6):3220-3226. |
[29] | WANG C M, LUO X Y, LUO H M, et al. Tuning the basicity of ionic liquids for equimolar CO2 capture[J]. Angewandte Chemie International Edition, 2011, 50(21):4918-4922. |
[30] | FENG X X, HU G S, HU X, et al. Tetraethylenepentamine-modified siliceous mesocellular foam (MCF) for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2013, 52(11):4221-4228. |
[31] | CHENG J, LI Y, HU L, et al. CO2 adsorption performance of ionic liquid[P66614] [2-Op] loade onto molecular sieve MCM-41 compared to pure ionic liquid in biohythane/pure CO2 atmospheres[J]. Energy & Fuels, 2016,30(4):3251-3256. |
[32] | WANG X, GUO Q, KONG T. Tetraethylenepentamine-modified MCM-41/silica gel with hierarchical mesoporous structure for CO2 capture[J]. Chemical Engineering Journal, 2015,273:472-480. |
[33] | WANG X, CHEN L, GUO Q. Development of hybrid amine-functionalized MCM-41 sorbents for CO2 capture[J]. Chemical Engineering Journal, 2015, 260:573-581. |
[1] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[2] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[3] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[4] | Tianyang YANG, Huiming ZOU, Hui ZHOU, Chunlei WANG, Changqing TIAN. Experimental investigation on heating performance of vapor-injection CO2 heat pump for electric vehicles at -30℃ [J]. CIESC Journal, 2023, 74(S1): 272-279. |
[5] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[6] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[7] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[8] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[9] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[10] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[11] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[12] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[13] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[14] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[15] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 623
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 318
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||