CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 772-779.DOI: 10.11949/j.issn.0438-1157.20181044
Previous Articles Next Articles
Shun ZHU(),Qi GUO,Dawei ZHANG,Qingchun YANG()
Received:
2018-09-17
Revised:
2018-10-16
Online:
2019-02-05
Published:
2019-02-05
Contact:
Qingchun YANG
通讯作者:
杨庆春
作者简介:
<named-content content-type="corresp-name">朱顺</named-content>(1995—),男,硕士研究生,<email>zhushun0825@163.com</email>|杨庆春(1990—),男,博士,讲师,<email>ceqcyang@hfut.edu.cn</email>
基金资助:
CLC Number:
Shun ZHU, Qi GUO, Dawei ZHANG, Qingchun YANG. Conceptual design and system analysis coal to ethylene glycol process integrated with efficient utilization of CO2[J]. CIESC Journal, 2019, 70(2): 772-779.
朱顺, 郭琦, 张大伟, 杨庆春. 集成CO2高效利用的煤制乙二醇过程设计与系统分析[J]. 化工学报, 2019, 70(2): 772-779.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181044
1 | Yue H , Zhao Y , Ma X , et al . Ethylene glycol: properties, synthesis, and applications[J]. Chemical Society Reviews, 2012, 41 (11): 4218-4244. |
2 | 黄格省, 李振宇, 王建明 .我国现代煤化工产业发展现状及对石油化工产业的影响[J]. 化工进展, 2015, 34(2): 295-302. |
Huang G S , Li Z Y , Wang J M . The development status of modern coal chemical industry in China and its impact on petrochemical industry[J]. Chemical Industry and Engineering Progress, 2015, 34(2): 295-302. | |
3 | 周张锋, 李兆基, 潘鹏斌, 等 . 煤制乙二醇技术进展[J]. 化工进展, 2010, 29(11): 2003-2009. |
Zhou Z F , Li Z J , Pan P B , et al . Progress in coal-to-ethylene glycol technology[J]. Chemical Industry and Engineering Progress, 2010, 29(11): 2003-2009. | |
4 | 洪海, 费利江, 唐勇, 等 . 国内煤制乙二醇研究与产业化进展[J]. 化工进展, 2010, 29(S1): 349-352. |
Hong H , Fei L J , Tang Y , et al . Progress in research and industrialization of domestic coal-based ethylene glycol[J]. Chemical Progress, 2010, 29(S1): 349-352. | |
5 | Li Q , Lin Y . Exergy analysis of the LFC process[J]. Energy Conversion and Management, 2016, 108: 348-354. |
6 | Yu B Y , Chien I L . Design and optimization of dimethyl oxalate (DMO) hydrogenation process to produce ethylene glycol (EG)[J]. Chemical Engineering Research and Design, 2017, 121: 173-190. |
7 | Gong M H , Yi Q , Huang Y , et al . Coke oven gas to methanol process integrated with CO2 recycle for high energy efficiency, economic benefits and low emissions[J]. Energy Conversion and Management, 2017, 133: 318-331. |
8 | Hao Y , Huang Y , Gong M , et al . A polygeneration from a dual-gas partial catalytic oxidation coupling with an oxygen-permeable membrane reactor[J]. Energy Conversion and Management, 2015, 106: 466-478. |
9 | 卢样开, 崇立芹 . 我国煤制乙二醇产业化及竞争力分析[J]. 煤炭加工与综合利用, 2016,15: 18-24. |
Lu X K , Chong L Q . Industrialization and competitiveness analysis of coal-based glycol in China[J]. Coal Processing and Comprehensive Utilization, 2016, 15: 18-24. | |
10 | Xie K , Li W , Zhao W . Coal chemical industry and its sustainable development in China[J]. Energy, 2010, 35: 4349-4355. |
11 | Yi Q , Li W Y , Feng X , et al . Carbon cycle in advanced coal chemical engineering[J]. Chemical Society Review, 2015, 44(15): 5409-5445. |
12 | Manan Z A , Nawi W N R M , Alwi S R W , et al . Advances in Process Integration research for CO2 emission reduction—a review[J]. Journal of Cleaner Production, 2017, 167: 1-13. |
13 | Razzaq R , Li C , Zhang S . Coke oven gas: availability, properties, purification, and utilization in China[J]. Fuel, 2013, 113: 287-299. |
14 | Xiang D , Jin T , Lei X , et al . The high efficient synthesis of natural gas from a joint-feedstock of coke-oven gas and pulverized coke via a chemical looping combustion scheme[J]. Applied Energy, 2018, 212: 944-954. |
15 | Man Y , Yang S , Qian Y . Integrated process for synthetic natural gas production from coal and coke-oven gas with high energy efficiency and low emission[J]. Energy Conversion and Management, 2016, 117: 162-170. |
16 | Man Y , Yang S , Xiang D , et al . Environmental impact and techno-economic analysis of the coal gasification process with/without CO2 capture[J]. Journal of Cleaner Production, 2014, 71: 59-66. |
17 | Man Y , Yang S , Zhang J , et al . Conceptual design of coke-oven gas assisted coal to olefins process for high energy efficiency and low CO2 emission[J]. Applied Energy, 2014, 133: 197-205. |
18 | Yi Q , Gong M H , Huang Y , et al . Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance[J]. Energy, 2016, 112: 618-628. |
19 | Yi Q , Wu G , Gong S , et al . A feasibility study for CO2 recycle assistance with coke oven gas to synthetic natural gas[J]. Applied Energy, 2017, 193: 149-61. |
20 | Lim Y , Lee C J , Jeong Y S , et al . Optimal design and decision for combined steam reforming process with dry methane reforming to reuse CO2 as a raw material[J]. Industrial & Engineering Chemistry Research, 2012, 51(13): 4982-4989. |
21 | Yang S , Yang Q , Man Y , et al . Conceptual design and analysis of a natural gas assisted coal-to-olefins process for CO2 reuse[J]. Industrial & Engineering Chemistry Research, 2013, 52: 14406-14414. |
22 | Yang Q , Zhang D , Zhou H , et al . Process simulation, analysis and optimization of a coal to ethylene glycol process[J]. Energy, 2018, 155: 521-534. |
23 | Yang S , Yang Q , Li H , et al . An integrated framework for modeling, synthesis, analysis, and optimization of coal gasification-based energy and chemical processes[J]. Industrial & Engineering Chemistry Research, 2012, 51(48): 15763-15777. |
24 | Yang S , Qian Y , Ma D , et al . BGL gasifier for coal-to-SNG: a comparative techno-economic analysis[J]. Energy, 2017, 133: 158-170. |
25 | Pakhare D , Spivey J . A review of dry (CO2) reforming of methane over noble metal catalysts[J]. Chemical Society Reviews, 2014, 43(22): 7813-37. |
26 | Zhang C , Jun K W , Gao R , et al . Efficient utilization of carbon dioxide in gas-to-liquids process: process simulation and techno-economic analysis[J]. Fuel, 2015, 157: 285-291. |
27 | Yang Q , Zhang C , Zhang D , et al . Development of a coke oven gas assisted coal to ethylene glycol process for high techno-economic performance and low emission[J]. Industrial & Engineering Chemistry Research, 2018, 57(22): 7600-7612. |
28 | Zhang C , Jun K W , Gao R , et al . Efficient utilization of associated natural gas in a modular gas-to-liquids process: technical and economic analysis[J]. Fuel, 2016, 176: 32-39. |
29 | Mahmood R , Parshetti G K , Balasubramanian R . Energy, exergy and techno-economic analyses of hydrothermal oxidation of food waste to produce hydro-char and bio-oil[J]. Energy, 2016, 102: 187-198. |
30 | He C , You F . Shale gas processing integrated with ethylene production: novel process designs, exergy analysis, and techno-economic analysis[J]. Industrial & Engineering Chemistry Research, 2014, 53(28): 11442-11459. |
31 | Hanak D P , Erans M , Nabavi S , et al . Technical and economic feasibility evaluation of calcium looping with no CO2 recirculation[J]. Chemical Engineering Journal, 2018, 335: 763-773. |
[1] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[6] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[7] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[8] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[9] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[10] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[11] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[12] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[13] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[14] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[15] | Jiyuan LI, Jinwang LI, Liuwei ZHOU. Heat transfer performance of cold plates with different turbulence structures [J]. CIESC Journal, 2023, 74(4): 1474-1488. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||