CIESC Journal ›› 2019, Vol. 70 ›› Issue (4): 1436-1445.DOI: 10.11949/j.issn.0438-1157.20181346
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Haibin YU1,2(),Qiang LIU1,Likun ZHOU2,Zan CHEN2,Chao LUO2,Guanyan ZHANG1,Jianjie QIAO Lina WANG3
Received:
2018-11-15
Revised:
2019-02-27
Online:
2019-04-05
Published:
2019-04-05
Contact:
Haibin YU
于海斌1,2(),刘强1,周立坤2,陈赞2,罗超2,张贯艳1,乔利娜3,王建杰3
通讯作者:
于海斌
作者简介:
于海斌(1970—),男,教授级高级工程师,<email>yuhaibin9227@163.com</email>
基金资助:
CLC Number:
Haibin YU, Qiang LIU, Likun ZHOU, Zan CHEN, Chao LUO, Guanyan ZHANG, Jianjie QIAO Lina WANG. Preparation of MnO x /ZrO2 catalyst and catalytic ozonation degradation of methylorange[J]. CIESC Journal, 2019, 70(4): 1436-1445.
于海斌, 刘强, 周立坤, 陈赞, 罗超, 张贯艳, 乔利娜, 王建杰. MnO x /ZrO2 催化剂制备及催化臭氧氧化降解甲基橙[J]. 化工学报, 2019, 70(4): 1436-1445.
Sample | S BET/(m2/g) | D p/nm | V micro/(m3/g) |
---|---|---|---|
ZrO2 support | 13.22 | 20.64 | 0.068 |
fresh 15%MnO x /ZrO2 (400℃) | 12.90 | 26.23 | 0.084 |
used 15%MnO x /ZrO2 (400℃) | 13.20 | 20.54 | 0.068 |
Table 1 BET information of ZrO2 support, fresh and used 15%MnO x /ZrO2 (400℃) catalysts
Sample | S BET/(m2/g) | D p/nm | V micro/(m3/g) |
---|---|---|---|
ZrO2 support | 13.22 | 20.64 | 0.068 |
fresh 15%MnO x /ZrO2 (400℃) | 12.90 | 26.23 | 0.084 |
used 15%MnO x /ZrO2 (400℃) | 13.20 | 20.54 | 0.068 |
Fig.6 Effect of calcination temperature on catalytic activity of 15%MnO x /ZrO2 in ozonation(catalyst dosage=1.0 g/L, pH=6.5±0.05, ozone flow=0.6 mg/min, MO concentration=100 mg/L, temperature=25℃±1℃, volume=500 ml)
Fig.7 Effect of MnO x load on catalytic activity of MnO x /ZrO2 (calcination at 400℃) in ozonation (catalyst dosage=1.0 g/L, pH=6.5±0.05, ozone flow=0.6 mg/min, MO concentration=100 mg/L, temperature=25℃±1℃, volume=500 ml)
Fig.8 Effect of initial solution pH on decolorization of methyl orange in catalytic ozonation with 15%MnO x /ZrO2 (400℃) catalyst(catalyst dosage=1.0 g/L, ozone flow=0.6 mg/min, MO concentration=100 mg/L, temperature=25℃±1℃, volume=500 ml)
pH | Rate constant k/min-1 | R 2 |
---|---|---|
2.7 | 0.053 | 0.94 |
6.5 | 0.043 | 0.99 |
8.7 | 0.023 | 0.93 |
10.8 | 0.015 | 0.98 |
Table 2 Rate constant and correlation coefficients of methyl orange decolorization in different pH over 15%MnO x /ZrO2 (400℃) catalyst
pH | Rate constant k/min-1 | R 2 |
---|---|---|
2.7 | 0.053 | 0.94 |
6.5 | 0.043 | 0.99 |
8.7 | 0.023 | 0.93 |
10.8 | 0.015 | 0.98 |
System | Rate constant k/ min-1 | R 2 |
---|---|---|
15% MnO x /ZrO2 (400℃) adsorption | 0.006 | 0.93 |
O3 alone | 0.026 | 0.97 |
ZrO2+O3 | 0.029 | 0.93 |
15% MnO x /ZrO2 (400℃)+O3 | 0.046 | 0.96 |
Table 3 Rate constant and correlation coefficients of methyl orange decolorization process in different systems after 60 min reaction at pH=2.7
System | Rate constant k/ min-1 | R 2 |
---|---|---|
15% MnO x /ZrO2 (400℃) adsorption | 0.006 | 0.93 |
O3 alone | 0.026 | 0.97 |
ZrO2+O3 | 0.029 | 0.93 |
15% MnO x /ZrO2 (400℃)+O3 | 0.046 | 0.96 |
Fig.11 Stability of 15%MnO x /ZrO2 (400℃) catalyst(catalyst dosage=1.0 g/L, pH=2.7, ozone flow=0.6 mg/min, MO concentration=100 mg/L, temperature=25℃±1℃, volume=500 ml)
Run times | Element content/(mg/L) | |
---|---|---|
Mn | Zr | |
1 | 2.60 | 0.29 |
3 | 0.76 | 7.67 |
Table 4 Loss of Mn and Zr element contents in reaction solution after 1st and 3rd runs over 15%MnO x /ZrO2 (400℃) catalyst
Run times | Element content/(mg/L) | |
---|---|---|
Mn | Zr | |
1 | 2.60 | 0.29 |
3 | 0.76 | 7.67 |
1 | 李丽华, 马明明, 任庆军, 等 . CeO2/三维石墨烯催化臭氧化降解刚果红[J]. 化工环保,2017, 37(3): 294-299. |
Li L H , Ma M M , Ren Q J , et al . Degradation of congo red by catalytic ozonation on CeO2/3D graphene[J]. Environ. Pro. Chem. Ind., 2017, 37(3): 294-299. | |
2 | 任南琪, 周显娇, 郭婉茜, 等 . 染料废水处理技术研究进展[J]. 化工学报, 2013, 64(1): 84-94. |
Ren N Q , Zhou X J , Guo W Q , et al . A review on treatment methods of dye wastewater[J]. CIESC Journal, 2013, 64(1): 84-94. | |
3 | Habiba U , Siddique T A , Lee J J L , et al . Adsorption of methyl orange by chitosan/polyvinyl alcohol/zeolite electrospun composite nanofibrous membrane[J]. Carbohydr. Polym., 2018, 191: 79-85. |
4 | 张轶, 从燕青, 孙培德 . 电絮凝处理甲基橙废水的实验及动力学模型[J]. 化工学报, 2009, 60(9): 2339-2345. |
Zhang Y , Cong Y Q , Sun P D . Experiment and kinetic model for methyl orange wastewater removal by electroagulation[J]. CIESC Journal, 2009, 60(9): 2339-2345. | |
5 | Li P , Liu Z P , Wang X G , et al . Enhanced decolorization of methyl orange in aqueous solution using ironecarbon micro-electrolysis activation of sodium persulfate[J]. Chemosphere, 2017, 180: 100-107. |
6 | 张婷 . 高级氧化技术的研究进展[J]. 广州化工, 2011, 39(14): 36-39. |
Zhang T . Research progress of advanced oxidation technologies[J]. Guangzhou Chemical Industry, 2011, 39(14): 36-39. | |
7 | 刘爱萍 . 高级氧化技术在水处理中的研究与展望[J]. 科技致富向导, 2011, (3): 187-204. |
Liu A P . Research and development of advanced oxidation processes in water treatment[J]. Guide of Sci-tech Magazine, 2011, (3): 187-204. | |
8 | 任百祥, 范晶莹, 杨春维 . 磁性活性炭催化氧化降解水中甲基橙[J]. 化工环保, 2015, 35(4): 409-413. |
Ren B X , Fan J Y , Yang C W . Degradation of methyl orange in water by catalytic ozone oxidation with magnetic activated carbon[J]. Environ. Pro. Chem. Ind., 2015, 35(4): 409-413. | |
9 | Tang Y M , Pan Z Q , Li L S . pH-insusceptible cobalt-manganese immobilizing mesoporous siliceous MCM-41 catalyst for ozonation of dimethyl phthalate[J]. J. Colloid Interface Sci., 2017, 508: 196-202. |
10 | Tong S P , Shi R , Zhang H , et al . Catalytic performance of Fe3O4-CoO/Al2O3 catalyst in ozonation of 2-(2, 4-dichlorophenoxy) propionic acid, nitrobenzene and oxalic acid in water[J]. J. Environ. Sci., 2010, 22(10): 1623-1628. |
11 | 潘璐阳, 王树涛, 张兰河, 等 . 掺杂型纳米MnO2/Al2O3催化剂的制备及催化臭氧氧化处理驱油污水二级出水[J]. 硅酸盐通报, 2015, 34(8): 2260-2266. |
Pan L Y , Wang S T , Zhang L H , et al . Preparation of dope nano-MnO2/Al2O3 catalyst and catalytic ozonation of secondary effluent of oil extraction wastewater for advanced treatment[J]. Bull. Chin. Ceramic Soc., 2015, 34(8): 2260-2266. | |
12 | Asma A , Monia G , Javier R T F , et al . Nitrobenzene degradation in aqueous solution using ozone/cobalt supported activated carbon coupling process: a kinetic approach[J]. Sep. Purif. Technol., 2017, 184: 308-318. |
13 | Zhang J H , Zhang Q , Shao X Z , et al . Properties of magnetic carbon nanomaterials and application in removal organic dyes[J]. Chemosphere, 2018, 207: 377-384. |
14 | 何志桥, 姜哲, 姜理英, 等 . 多壁碳纳米管的氨表面改性及其臭氧催化降解草酸[J]. 化工学报, 2012, 63(8): 2551-2556. |
He Z Q , Jiang Z , Jiang L Y , et al . Surface modification of multi-walled carbon nanotubes by ammonia and catalytic degradation of oxalic by ozonation[J]. CIESC Journal, 2012, 63(8): 2551-2556. | |
15 | Liu X M , Lu G Q , Yan Z F . Synthesis and stabilization of nanocrystalline zirconia with MSU mesostructure[J]. J. Phys. Chem. B, 2004, 108: 15523-15528. |
16 | Su C L , Li J R , He D H , et al . Synthesis of isobutene from synthesis gas over nanosize zirconia catalysts [J]. Appl. Catal., A, 2000, 202(1): 81-89. |
17 | Michael W , David M , Antonelli J , et al . Synthesis and characterization of phosphated mesoporous zirconium oxide[J]. Nanostruct. Mater., 1997, 9(16): 165-168. |
18 | Song Y Q , Liu H M , He D H . Effects of hydrothermal conditions of ZrO2 on catalyst properties and catalytic performances of Ni/ZrO2 in the partial oxidation of methane[J]. Energy Fuels, 2010, 24(5): 2817-2824. |
19 | Benito M , Padilla R , Rodríguez L , et al . Zirconia supported catalysts for bioethanol steam reforming: effect of active phase and zirconia structure[J]. J. Power Sources, 2007, 169(1): 167-176. |
20 | 贡湘君, 叶飞, 刘荣, 等 . 四方相氧化锆基MnO x -CeO2负载型催化剂在低温NH3-SCR中的应用[J]. 功能材料, 2015, 10(46): 10090-10094. |
Gong X J , Ye F , Liu R , et al . Low-temperature selective catalytic reduction with NH3 over MnOx-CeO2 catalysts supported on nano tetragonal-phase zirconia[J]. Journal of Functional Materials, 2015, 10(46): 10090-10094. | |
21 | 彭爱国, 贺周初, 肖伟, 等 . 化学二氧化锰的研究进展[J].无机盐工业, 2011, 43(3): 8-11. |
Peng A G , He Z C , Xiao W , et al . Research progress of chemical manganese dioxide[J]. Inorganic Chemicals Industry, 2011, 43(3): 8-11. | |
22 | 袁建梅, 杨德敏 . 非均相催化臭氧氧化深度处理钻井废水的效能研究[J]. 工业水处理, 2014, 34(8): 36-40. |
Yuan J M , Yang D M . Efficiency research on the advanced treatment of drilling wastewater by heterogeneous catalytic ozonation[J]. Industrial Water Treatment, 2014, 34(8): 36-40. | |
23 | 郭春芳 . 催化臭氧氧化工艺深度处理印染废水[J]. 工业水处理, 2013, 33(7): 43-46. |
Guo C F . Study on the advanced treatment of printing & dyeing wastewater by catalysis ozone oxidation process[J]. Industrial Water Treatment, 2013, 33(7): 43-46. | |
24 | Andreozzi R , Insola A , Caprio V , et al . The use of manganese dioxide as a heterogeneous catalyst for oxalic acid ozonation in aqueous solution[J]. Appl. Catal., A, 1996, 138(1): 75-81. |
25 | Tong S P , Liu W P , Leng W H , et al . Characteristics of MnO2 catalytic ozonation of sulfosalicylic acid and propionic acid in water[J]. Chemosphere, 2003, 50(10): 1359-1364. |
26 | Mullet M , Fievet P , Szymczyk A , et al . A simple and accurate determination of the point of zero charge of ceramic membranes[J]. Desalination, 1999, 121: 41-48. |
27 | Gayle N , Rob H , Mary D . Granular activated carbon: importance of surface properties in the adsorption of naturally occurring organics[J]. Colloids Surf., A, 1993, 78: 65-71. |
28 | 张永利, 韦朝海, 史册, 等 . Cu-Fe-Ru-La/γ-Al2O3湿式氧化催化剂的制备、表征及机理[J]. 人工晶体学报, 2013, 42(7): 1457-1469. |
Zhang Y L , Wei C H , Shi C , et al . Preparation, characterization and mechanism of Cu-Fe-Ru-La/γ-Al2O3 catalysts for wastewater wet oxidation[J]. J. Synthetic Cryst., 2013, 42(7): 1457-1469. | |
29 | 刘昳 . 钛催化剂光催化降冰片二烯异构研究[D]. 天津: 天津大学, 2009. |
Liu Y . Study on photocatalytic isomerization of norbornadiene with titanium catalyst[D]. Tianjin: Tianjin University, 2009. | |
30 | 赵基钢, 沈本贤, 肖卫国 . 薄片状TS-1分子筛催化剂及其在丙烯环氧化反应中的催化性能[J]. 石化技术与应用, 2010, 28(1): 1-4. |
Zhao J G , Shen B X , Xiao W G . Research of lamellar TS-1 molecular sieve catalyst and their catalytic performance in propylene oxidation[J]. Petrochemical Technology & Application, 2010, 28(1): 1-4. | |
31 | Huang H B , Ye X G , Huang W J , et al . Ozone-catalyticoxidation of gaseous benzene over MnO2/ZSM-5 at ambient temperature: catalytic deactivationand its suppression[J]. Chem. Eng. J., 2015, 264: 24-31. |
32 | Shahzad A , Quan X , Chen S , et al . Synthesis of manganese incorporated hierarchical mesoporous silica nanosphere with fibrous morphology by facile one-pot approach for efficient catalytic ozonation[J]. J. Hazard. Mater., 2016, 318: 308-318. |
33 | 柯武, 张永丽, 张静, 等 . Fe-MnO x 催化臭氧氧化甲基橙[J]. 四川大学学报, 2016, 48(1): 221-226. |
Ke W , Zhang Y L , Zhang J , et al . Ozonation of methyl orange catalyzed by Fe-MnO x [J]. J. Sichuan Univ., 2016, 48(1): 221-226. | |
34 | 王伟平, 陈凌燕, 杨水金 . H3PW(12)O(40)/ZrO2催化合成环己酮乙二醇缩酮[J]. 湖北师范大学学报(自然科学版), 2011, 31(1): 84-88. |
Wang W P , Chen L Y , Yang S J . Synthesis of cyclohexanone glycol ketal catalyzed by H3PW(12)O(40)/ZrO2 [J]. Journal of Hubei Normal Univerity(Nature Science), 2011, 31(1): 84-88. | |
35 | Abidin A Z , Bakar N H H A , Ng E P , et al . Rapid degradation of methyl orange by Ag doped zeolite X in the presence of borohydride[J]. Journal of Taibah University for Science, 2017, 11: 1070-1079. |
36 | Gholamreza M , Maryam M . Degradation and biodegradability improvement of the reactive red 198 azo dye using catalytic ozonation with MgO nanocrystals[J]. Chem. Eng. J., 2009, 152: 1-7. |
37 | Nidhi G , Bonamail P . Core-shell structure of metal loaded CdS-SiO2 hybrid nanocomposites for complete photomineralization of methyl orange by visible light[J]. J. Mol. Catal. A: Chem., 2014, 391: 158-167. |
38 | Xing S T , Hu C , Qu J H , et al . Characterization and reactivity of MnO x supported on mesoporous zirconia for herbicide 2, 4-D mineralization with ozone[J]. Environ. Sci. Technol., 2008, 42: 3363-3368. |
39 | Sui M H , Xing S C , Sheng L , et al . Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst[J]. J. Hazard. Mater., 2012, 227/228: 227-236. |
40 | Faheem N , Cao H B , Xie Y B , et al . Selection of active phase of MnO2 for catalytic ozonation of 4-nitrophenol[J]. Chemosphere, 2017, 168: 1457-1466. |
[1] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[2] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[5] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[6] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[7] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[8] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[9] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[10] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[11] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[12] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[13] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[14] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[15] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||