CIESC Journal ›› 2019, Vol. 70 ›› Issue (8): 2981-2990.DOI: 10.11949/j.issn.0438-1157.20181438
Previous Articles Next Articles
Ping LI1,2(),Changming LI1,Zhengkang DUAN2,Shiqiu GAO1,Guangwen XU3,Jian YU1()
Received:
2018-12-04
Revised:
2019-03-01
Online:
2019-08-05
Published:
2019-08-05
Contact:
Jian YU
李萍1,2(),李长明1,段正康2,高士秋1,许光文3,余剑1()
通讯作者:
余剑
作者简介:
李萍(1993—),女,硕士研究生,基金资助:
CLC Number:
Ping LI, Changming LI, Zhengkang DUAN, Shiqiu GAO, Guangwen XU, Jian YU. Application conditions and kinetics simulation over SCR catalyst for flue gas denitrification under low temperature[J]. CIESC Journal, 2019, 70(8): 2981-2990.
李萍, 李长明, 段正康, 高士秋, 许光文, 余剑. 低温烟气脱硝催化剂适用条件与动力学[J]. 化工学报, 2019, 70(8): 2981-2990.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181438
催化剂长度/cm | 气速/(m/s) | NO转化率/% | |||
---|---|---|---|---|---|
120℃ | 160℃ | 200℃ | 240℃ | ||
20 | 1 | 7.5 | 45.9 | 71.3 | 85.4 |
2 | 6.7 | 27.5 | 51.3 | 70 | |
3 | 2.8 | 18.9 | 39.4 | 50.3 | |
4 | 2.8 | 18.7 | 38.5 | 50.7 | |
40 | 1 | 23.9 | 78 | 95.6 | 100 |
2 | 20.4 | 59 | 83.8 | 99.7 | |
3 | 10.3 | 43.7 | 76.9 | 91.3 | |
4 | 3.5 | 35.4 | 69.8 | 86.5 | |
60 | 1 | 56.1 | 99.9 | 100 | 100 |
2 | 31.5 | 85.6 | 98.5 | 100 | |
3 | 12 | 55.6 | 84.8 | 96.8 | |
4 | 7.9 | 23.7 | 70 | 92.8 | |
80 | 1 | 60 | 100 | 100 | 100 |
2 | 45.1 | 96.9 | 100 | 100 | |
3 | 16.5 | 70 | 96.6 | 100 | |
4 | 9.2 | 48.1 | 90.3 | 100 |
Table 1 NO conversions over honeycomb catalyst under different reaction conditions
催化剂长度/cm | 气速/(m/s) | NO转化率/% | |||
---|---|---|---|---|---|
120℃ | 160℃ | 200℃ | 240℃ | ||
20 | 1 | 7.5 | 45.9 | 71.3 | 85.4 |
2 | 6.7 | 27.5 | 51.3 | 70 | |
3 | 2.8 | 18.9 | 39.4 | 50.3 | |
4 | 2.8 | 18.7 | 38.5 | 50.7 | |
40 | 1 | 23.9 | 78 | 95.6 | 100 |
2 | 20.4 | 59 | 83.8 | 99.7 | |
3 | 10.3 | 43.7 | 76.9 | 91.3 | |
4 | 3.5 | 35.4 | 69.8 | 86.5 | |
60 | 1 | 56.1 | 99.9 | 100 | 100 |
2 | 31.5 | 85.6 | 98.5 | 100 | |
3 | 12 | 55.6 | 84.8 | 96.8 | |
4 | 7.9 | 23.7 | 70 | 92.8 | |
80 | 1 | 60 | 100 | 100 | 100 |
2 | 45.1 | 96.9 | 100 | 100 | |
3 | 16.5 | 70 | 96.6 | 100 | |
4 | 9.2 | 48.1 | 90.3 | 100 |
1 | 李穹, 吴玉新, 杨海瑞, 等 . SNCR脱硝特性的模拟及优化[J]. 化工学报, 2013, 64(5): 1789-1796. |
Li Q , Wu Y X , Yang H R , et al . Simulation and optimization of SNCR process[J]. CIESC Journal, 2013, 64(5): 1789-1796. | |
2 | Lai J K , Wachs I E . A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5-WO3/TiO2 catalysts[J]. ACS Catalysis, 2018, 8(3): 6537-6551. |
3 | 顾卫荣, 周明吉, 马薇 . 燃煤烟气脱硝技术的研究进展[J]. 化工进展, 2012, 31(9): 2084-2092. |
Gu W R , Zhou M J , Ma W . Technology statue and analysis on coal-fired flue gas denitrification[J]. Chemical Industry and Engineering Progress, 2012, 31(9): 2084-2092. | |
4 | 苗强 . 脱硝技术的现状及展望[J]. 洁净煤技术, 2017, 23(2): 12-19. |
Miao Q . Progress and prospects of denitration technology[J]. Clean Coal Technology, 2017, 23(2):12-19. | |
5 | 顾庆华, 胡秀丽 . SCR脱硝反应区域运行温度影响因素研究[J]. 洁净煤技术, 2015, 21(2):77-80. |
Gu Q H , Hu X L . Influencing factors of operating temperature of denitration SCR reactor[J]. Clean Coal Technology, 2015, 21(2):77-80. | |
6 | Tao X X , Xu N , Xie M H , et al . Progress of the technique of coal microwave desulfurization[J]. International Journal of Coal Science & Technology, 2014, 1(1): 113-128. |
7 | 谢慧, 周跃, 张奎, 等 . 玻璃窑炉应用SCR烟气脱硝技术的中试研究[J]. 玻璃, 2013, 3:35-39. |
Xie H , Zhou Y , Zhang K , et al . SCR de-nitrification pilot-plant test of flue gas from glass furnace[J]. Glass, 2013, 3:35-39. | |
8 | Udayan S , Naushita S , Siba S M . Environmental life cycle assessment of Indian coal-fired power plants[J]. International Journal of Coal Science & Technology, 2016, 3(2): 215-225. |
9 | 陈杭君, 赵华, 丁经纬 . 火电厂烟气脱硝技术介绍[J]. 热力发电, 2005, 2: 15-18. |
Chen H J , Zhao H , Ding J W . Introduction of flue gas denitration technology of thermal power plant[J]. Thermal Power Generation, 2005, 2: 15-18. | |
10 | 郦建国, 朱法华, 孙雪丽 . 中国火电大气污染防治现状及挑战[J]. 中国电力, 2018, 51(6): 2-10. |
Li J G , Zhu F H , Sun X L . Current status and challenges of atmospheric pollution prevention and control of thermal power plants in China[J]. Electric Power, 2018, 51(6): 2-10. | |
11 | 张慧玲 . 焦炉烟气脱硝技术的分析与探讨[J]. 山西焦煤科技, 2016, 8: 7179-7182. |
Zhang H L . Analysis and discussion of coke oven flue gas denitration technology[J]. Shanxi Coking Coal Science & Technology, 2016, 8: 7179-7182. | |
12 | 尹涛, 张家平, 叶明强, 等 . 炼焦炉应用SCR烟气脱硝的中试研究[J]. 环境工程学报, 2016, 10(3): 151-153. |
Yin T , Zhang J P , Ye M Q , et al . SCR de-nitrification pilot-plant test of flue gas from coking furnace[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 151-153. | |
13 | 刘亭, 王廷春, 吴瑞青, 等 . 低温NH3-SCR脱硝催化剂研究进展[J]. 安全与环境学报, 2012, 19(6): 42-44. |
Liu T , Wang T C , Wu R Q , et al . Research advance review for low-temperature NH3-SCR catalysts[J]. Journal of Safety and Environment, 2012, 19(6): 42-44. | |
14 | 苗永旗, 庄柯, 袁立明 . 低温SCR脱硝催化剂研究进展[J]. 电力科技与环保, 2013, 29(1): 13-15. |
Miao Y Q , Zhuang K , Yuan L M . Research process of low-temperature SCR catalysts[J]. Electric Power Environmental Protection, 2013, 29(1): 13-15. | |
15 | Svachula J , Ferlazzo N , Forzatti P , et al . Selective reduction of nitrogen oxides (NO x ) by ammonia over honeycomb selective catalytic reduction catalysts[J]. Industrial & Engineering Chemistry Research, 1993, 32(6): 1053-1060. |
16 | Zuercher S , Hackel M , Schaub G . Kinetics of selective catalytic NO x reduction in a novel gas-particle filter reactor (catalytic filter element and sponge insert) [J]. Industrial & Engineering Chemistry Research, 2008, 47(5): 1435-1442. |
17 | 肖翠微, 李婷 . 低温SCR锰系脱硝催化剂的研究进展[J]. 洁净煤技术, 2016, 22(1): 95-100. |
Xiao C W , Li T . Research progress of low-temperature SCR denitrification manganese-based catalysts[J]. Clean Coal Technology, 2016, 22(1): 95-100. | |
18 | 杨永利, 徐东耀, 晁春艳, 等 . 负载型Mn基低温NH3-SCR脱硝催化剂研究综述[J]. 化工进展, 2016, 35(4): 1094-1100. |
Yang Y L , Xu D Y , Chao C Y , et al . Research advance review on supported Mn-based catalysts at low-temperature selective catalytic reduction of NO x with NH3 [J]. Chemical Industry and Engineering Progress, 2016, 35(4): 1094-1100. | |
19 | 郑玉婴, 汪谢 . Mn基低温SCR脱硝催化剂的研究进展[J]. 功能材料, 2014, 45(11): 11008-11012. |
Zheng Y Y , Wang X . Research progress on Mn-based catalysts for low-temperature selective catalytic reduction of NO x [J]. Journal of Functional Materials, 2014, 45(11): 11008-11012. | |
20 | 梅笛, 谢峻林, 方德, 等 . SCR脱硝催化剂的碱及碱土金属中毒研究进展[J]. 硅酸盐通报, 2014, 33(6): 1398-1402. |
Mei D , Xie J L , Fang D , et al . Research progress on alkali and alkaline earth metal poison of SCR catalyst[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(6): 1398-1402 | |
21 | 沈伯雄, 刘亭, 杨婷婷, 等 . 低温SCR脱硝催化剂过渡金属氧化物改性及硫中毒失活机制研究[J]. 环境科学, 2009, 30(8): 2204-2209. |
Shen B X , Liu T , Yang T T , et al . Deactivation by SO2 of transition metal oxides modified low-temperature SCR catalyst for NO x reduction with NH3 [J]. Environmental Science, 2009, 30(8): 2204-2209. | |
22 | Tsuji K , Shiraishi I . Combined desulfurization, denitrification and reduction of air toxics using activated coke (Ⅰ): Activity of activated coke[J]. Fuel, 1997, 76(6): 555-560. |
23 | 李长明, 许启成, 郭凤, 等 . 低温焦化烟气脱硝催化剂制备与中试验证研究[J]. 洁净煤技术, 2017, 23(4): 63-70. |
Li C M , Xu Q C , Guo F , et al . Production and pilot-scale test of honeycomb DeNO x catalyst for low temperature flue gas from coking plant[J]. Clean Coal Technology, 2017, 23(4): 63-70. | |
24 | Gao Y , Luan T , Lu T , et al . Performance of V2O5-WO3-MoO3/TiO2 catalyst for selective catalytic reduction of NO x by NH3 [J]. Chinese Journal of Chemical Engineering, 2013, 21(1): 1-7. |
25 | Li C M , Yu J , He Y , et al . The industrial feasibility of low temperature DeNO x in the presence of SO x : a project case in a medium coking plant[J]. RSC Advances, 2018, 8(33): 18260-18265. |
26 | Zhang Y S , Li C M , Wang C , et al . Pilot-scale test of a V2O5-WO3/TiO2-coated type of honeycomb DeNO x catalyst and its deactivation mechanism[J]. Industrial & Engineering Chemistry Research, 2019, 58(2): 828-835. |
27 | Schütt M , Gallinger M , Moos R . Particulate filter substrates with SCR-functionality manufactured by Co-extrusion of ceramic substrate and SCR active material[J]. Top. Catal. , 2016, 60: 1-5. |
28 | Xiong S , Xiao X , Liao Y , et al . Global kinetic study of NO reduction by NH3 over V2O5-WO3/TiO2: relationship between the SCR performance and the key factors[J]. Ind. Eng. Chem. Res. , 2015, 54: 11011-11023. |
29 | Koebel M , Elsener M . Selective catalytic reduction of NO over commercial DeNO x catalysts: experimental determination of kinetic and thermodynamic parameters[J]. Chemical Engineering Science, 1998, 53(6): 657-669. |
30 | Busca G , Liett L , Ramis G , et al . Chemical and mechanistic aspects of the selective catalytic reduction of NO x by ammonia over oxide catalysts: a review[J]. Applied Catalysis B: Environmental, 1998, 18(2): 1-36. |
[1] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[2] | Yihao ZHANG, Zhenlei WANG. Fault detection using grouped support vector data description based on maximum information coefficient [J]. CIESC Journal, 2023, 74(9): 3865-3878. |
[3] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[4] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
[5] | Tianqi TANG, Yurong HE. Effect of magnetic field on the mesoscale structure evolution process in a wet particle fluidized bed [J]. CIESC Journal, 2022, 73(6): 2636-2648. |
[6] | Yilin LIU, Yu LI, Yaxiong YU, Zheqing HUANG, Qiang ZHOU. Construction of two parameter mesoscale heat transfer model for gas-solid flow based on resetting temperature method [J]. CIESC Journal, 2022, 73(6): 2612-2621. |
[7] | Hui YANG, Hongze LI, Quan CHEN, Zexi ZHENG, Ran LI, Qicheng SUN. Dynamics of the transition of mass flow to funnel flow in a silo [J]. CIESC Journal, 2022, 73(6): 2722-2731. |
[8] | Biao HAN, Chao SHANG, Yongheng JIANG, Dexian HUANG. Object-oriented refinery plant-wide scheduling optimization model and program framework [J]. CIESC Journal, 2022, 73(4): 1623-1630. |
[9] | Wei ZHOU, Fuye WANG, Ning HE, Haibin YU, Xinbin MA, Jiaxu LIU. Study on the relationship of active centers and catalytic performance of Cu/SSZ-13 for NH3-SCR [J]. CIESC Journal, 2022, 73(2): 672-680. |
[10] | Meng HUO, Xiaowan PENG, Jin ZHAO, Qiuwei MA, Chun DENG, Bei LIU, Guangjin CHEN. COSMO-RS based solvent screening and H2/CO separation experiments for CO absorption by ionic liquids [J]. CIESC Journal, 2022, 73(12): 5305-5313. |
[11] | Shiyang YE, Min CHENG, Xu JI, Yiyang DAI, Yagu DANG, Kexin BI, Zhiwei ZHAO, Li ZHOU. High-throughput computational screening strategy for high-performance COF materials: separation of hexane isomers [J]. CIESC Journal, 2022, 73(11): 5138-5149. |
[12] | Xing TIAN, Jiayue ZHANG, Zhigang GUO, Jian YANG, Qiuwang WANG. Flow and heat transfer characteristics of particles flowing along the plate with different mixing elements [J]. CIESC Journal, 2022, 73(11): 4884-4892. |
[13] | Yuxian XIE, Tao LIU, Sheng SU, Lijun LIU, Yuxiu ZHONG, Zhiwei MA, Kai XU, Yi WANG, Song HU, Jun XIANG. Influence of oxygen content in industrial kiln flue gas on NH3-SCR denitration reaction of vanadium-titanium catalysts [J]. CIESC Journal, 2022, 73(10): 4410-4418. |
[14] | LI Minxia, ZHAN Haomiao, WANG Pai, LIU Xuetao, LI Yuhan, MA Yitai. A CO2 transcritical refrigeration system with ejector and economizer [J]. CIESC Journal, 2021, 72(S1): 146-152. |
[15] | Zeyan LI, Xing FAN, Jian LI. Non-thermal plasma enhanced hydrolysis of urea decomposition by-products over TiO2 [J]. CIESC Journal, 2021, 72(9): 4698-4707. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||