CIESC Journal ›› 2014, Vol. 65 ›› Issue (5): 1721-1728.DOI: 10.3969/j.issn.0438-1157.2014.05.023
Previous Articles Next Articles
ZHANG Yingying1,2, JI Xiaoyan2, LU Xiaohua1
Received:
2014-01-02
Revised:
2014-02-16
Online:
2014-05-05
Published:
2014-05-05
Supported by:
supported by the National Basic Research Program of China (2013CB733501), the National Natural Science Foundation of China (21176112,91334202), the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Swedish Energy Agency.
张盈盈1,2, 吉晓燕2, 陆小华1
通讯作者:
陆小华
基金资助:
国家重点基础研究发展计划项目(2013CB733501);国家自然科学基金项目(21176112,91334202);江苏高校优势学科建设工程;瑞典能源署资助项目。
CLC Number:
ZHANG Yingying, JI Xiaoyan, LU Xiaohua. Application of choline-based deep eutectic solvents in CO2 capture and separation[J]. CIESC Journal, 2014, 65(5): 1721-1728.
张盈盈, 吉晓燕, 陆小华. 胆碱类低共融溶剂在CO2捕集与分离中的应用[J]. 化工学报, 2014, 65(5): 1721-1728.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.3969/j.issn.0438-1157.2014.05.023
[1] | Hussain A. A single stage membrane process for CO2 capture from flue gas by a facilitated transport membrane [J]. Sep. Sci. Technol., 2012, 47(13): 1857-1865 |
[2] | Ho M T, Allinson G W, Wiley D E. Reducing the cost of CO2 capture from flue gases using pressure swing adsorption [J]. Ind. Eng. Chem. Res., 2008, 47(14): 4883-4890 |
[3] | Basha O M, Keller M J, Luebke D R, Resnik K P, Morsi B I. Development of a conceptual process for selective CO2 capture from fuel gas streams using [hmim][Tf2N] ionic liquid as a physical solvent [J]. Energy Fuels, 2013, 27(7): 3905-3917 |
[4] | Bates E D, Mayton R D, Ntai I, Davis J H. CO2 capture by a task-specific ionic liquid [J]. J. Amer. Chem. Soc., 2002, 124(6): 926-927 |
[5] | Ramdin M, de Loos T W, Vlugt T J H. State-of-the-art of CO2 capture with ionic liquids [J]. Ind. Eng. Chem. Res., 2012, 51(24): 8149-8177 |
[6] | Li Xiaoyong, Hou Mingqiang, Han Buxing, Wang Xiaoling, Zou Lizhuang. Solubility of CO2 in a choline chloride plus urea eutectic mixture [J]. J. Chem. Eng. Data, 2008, 53(2): 548-550 |
[7] | Li Xiaoyong, Hou Mingqiang, Zhang Zhaofu, Han Buxing, Yang Guanying, Wang Xiaoling, Zou Lizhuang. Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters [J]. Green Chem., 2008, 10(8): 879-884 |
[8] | Li Wenjing, Zhang Zhaofu, Han Buxing, Hu Suqin, Song Jinliang, Xie Ye, Zhou Xiaosi. Switching the basicity of ionic liquids by CO2 [J]. Green Chem., 2008, 10(11): 1142-1145 |
[9] | Su W C, Wong D S H, Li M H. Effect of water on solubility of carbon dioxide in (aminomethanamide +2-Hydroxy-N,N,N- trimethylethanaminium chloride) [J]. J. Chem. Eng. Data, 2009, 54(6): 1951-1955 |
[10] | Leron R B, Wong D S H, Li M H. Densities of a deep eutectic solvent based on choline chloride and glycerol and its aqueous mixtures at elevated pressures [J]. Fluid Phase Equilibr., 2012, 335: 32-38 |
[11] | Leron R B, Soriano A N, Li M H. Densities and refractive indices of the deep eutectic solvents (choline chloride + ethylene glycol or glycerol) and their aqueous mixtures at the temperature ranging from 298.15 to 333.15 K [J]. J. Taiwan Inst. Chem. Eng., 2012, 43(4): 551-557 |
[12] | Wu S H, Caparanga A R, Leron R B, Li M H. Vapor pressure of aqueous choline chloride-based deep eutectic solvents (ethaline, glyceline, maline and reline) at 30—70℃ [J]. Thermochim. Acta, 2012, 544:1-5 |
[13] | Leron R B, Li M H. High-pressure density measurements for choline chloride: Urea deep eutectic solvent and its aqueous mixtures at T = (298.15 to 323.15) K and up to 50 MPa [J]. J. Chem. Thermodyn., 2012, 54: 293-301 |
[14] | Leron R B, Li M H. Molar heat capacities of choline chloride-based deep eutectic solvents and their binary mixtures with water [J]. Thermochim. Acta, 2012, 530: 52-57 |
[15] | Leron R B, Li M H. Solubility of carbon dioxide in a choline chloride-ethylene glycol based deep eutectic solvent [J]. Thermochim. Acta, 2013, 551: 14-19 |
[16] | Leron R B, Li M H. Solubility of carbon dioxide in a eutectic mixture of choline chloride and glycerol at moderate pressures [J]. J. Chem. Thermodyn., 2013, 57: 131-136 |
[17] | Lin C M, Leron R B, Caparanga A R, Li M H. Henry's constant of carbon dioxide-aqueous deep eutectic solvent (choline chloride/ethylene glycol, choline chloride/glycerol, choline chloride/malonic acid) systems [J]. J. Chem. Thermodyn., 2014, 68: 216-220 |
[18] | Zhang Yingying(张盈盈), Lu Xiaohua(陆小华), Feng Xin(冯新), Shi Yijun(史以俊), Ji Xiaoyan(吉晓燕). Properties and applications of choline-based deep eutectic solvents [J]. Progress in Chemistry(化学进展), 2013, 25(6): 881-892 |
[19] | Abbott A P, Capper G, Davies D L, Rasheed R K, Tambyrajah V. Novel solvent properties of choline chloride/urea mixtures [J]. Chem. Commun., 2003(1): 70-71 |
[20] | Fumino K, Peppel T, Geppert-Rybczynska M, Zaitsau D H, Lehmann J K, Verevkin S P, Kockerling M, Ludwig R. The influence of hydrogen bonding on the physical properties of ionic liquids [J]. Phys. Chem. Chem. Phys., 2011, 13(31): 14064-14075 |
[21] | Abbott A P, Harris R C, Ryder K S, D'Agostino C, Gladden L F, Mantle M D. Glycerol eutectics as sustainable solvent systems [J]. Green Chem., 2011, 13(1): 82-90 |
[22] | Francisco M, van den Bruinhorst A, Zubeir L F, Peters C J, Kroon M C. A new low transition temperature mixture (LTTM) formed by choline chloride + lactic acid: characterization as solvent for CO2 capture [J]. Fluid Phase Equilibr., 2013, 340: 77-84 |
[23] | Hu S Q, Jiang T, Zhang Z F, Zhu A L, Han B X, Song J L, Xie Y, Li W J. Functional ionic liquid from biorenewable materials: synthesis and application as a catalyst in direct aldol reactions[J]. Tetrahedron Lett., 2007, 48(32): 5613-5617 |
[24] | Zhang Q, De Oliveira Vigier K, Royer S, Jerome F. Deep eutectic solvents: syntheses, properties and applications [J]. Chem. Soc. Rev., 2012, 41(21): 7108-7146 |
[25] | Hasib-ur-Rahman M, Siaj M, Larachi F. Ionic liquids for CO2 capture—development and progress [J]. Chem. Eng. Process. Process Intensif., 2010, 49(4): 313-322 |
[26] | Ciocirlan O, Iulian O, Croitoru O. Effect of temperature on the physico-chemical properties of three ionic liquids containing choline chloride [J]. Rev. Chim., 2010, 61: 721-723 |
[27] | Popescu A M, Constantin V, Florea A, Baran A. Physical and electrochemical properties of 2-hydroxy-ethyl-trimethyl ammonium chloride based ionic liquids as potential electrolytes for metals electrodeposition [J]. Rev. Chim., 2011, 62(5): 531-537 |
[28] | Shahbaz K, Baroutian S, Mjalli F, Hashim M, AlNashef I. Densities of ammonium and phosphonium based deep eutectic solvents: prediction using artificial intelligence and group contribution techniques [J]. Thermochim. Acta, 2012, 527: 59-66 |
[29] | Yan-Peng H, Rhoda B, Allan N, Alvin R, Meng-Hui L. Diffusivity, density and viscosity of aqueous solutions of choline chloride/ ethylene glycol and choline chloride/malonic acid [J]. J. Chem. Eng. Jpn., 2012, 45(12): 939-947 |
[30] | Widegren J A, Magee J W. Density, viscosity, speed of sound, and electrolytic conductivity for the ionic liquid 1-hexyl-3- methylimidazolium bis(trifluoromethylsulfonyl)imide and its mixtures with water [J]. J. Chem. Eng. Data, 2007, 52(6): 2331-2338 |
[31] | Abbott A P, Davies D L, Capper G, Rasheed R K, Tambyrajah V. Ionic liquids and their use as solvents [P]. US, 20040097755A1. 2004-05-20 |
[32] | Kosmulski M, Gustafsson J, Rosenholm J B. Thermal stability of low temperature ionic liquids revisited [J]. Thermochim. Acta, 2004, 412(1/2): 47-53 |
[33] | Maton C, De Vos N, Stevens C V. Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools [J]. Chem. Soc. Rev., 2013, 42(13): 5963-5977 |
[34] | Böck R, Wulf S E. Electrodeposition of iron films from an ionic liquid (ChCl/urea/FeCl3 deep eutectic mixtures) [J]. Trans. Inst. Met. Finish., 2009, 87(1): 28-32 |
[35] | D'Agostino C, Harris R C, Abbott A P, Gladden L F, Mantle M D. Molecular motion and ion diffusion in choline chloride based deep eutectic solvents studied by H-1 pulsed field gradient NMR spectroscopy [J]. Phys. Chem. Chem. Phys., 2011, 13(48): 21383- 21391 |
[36] | Tariq M, Freire M G, Saramago B, et al. Surface tension of ionic liquids and ionic liquid solutions [J]. Chem. Soc. Rev., 2012, 41(2): 829-868 |
[37] | MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, Adjiman C S, Williams C K, Shah N, Fennell P. An overview of CO2 capture technologies [J]. Energy Environ. Sci., 2010, 3(11): 1645-1669 |
[38] | Xu Y, Schutte R P, Hepler L G. Solubilities of carbon dioxide, hydrogen sulfide and sulfur dioxide in physical solvents [J]. Can. J. Chem. Eng., 1992, 70(3): 569-573 |
[39] | Aki S N, Mellein B R, Saurer E M, Brennecke J F. High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids [J]. J. Phys. Chem. B, 2004, 108(52): 20355-20365 |
[40] | Burr B, Lyddon L. A comparison of physical solvents for acid gas removal//Proceedings of the Gas Processors' Association Convention[C]. Grapevine, Texas, 2008 |
[41] | Tokuda H, Hayamizu K, Ishii K, Susan M A B H, Watanabe M. Physicochemical properties and structures of room temperature ionic liquids(Ⅱ): Variation of alkyl chain length in imidazolium cation [J]. J. Phys. Chem. B, 2005, 109(13): 6103-6110 |
[42] | Frank E, Abbott A P, Douglas R M. Electrodeposition From Ionic Liquids [M]. Weinheim: Wiley-VCH, 2008: 15-42 |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[4] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[5] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[6] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[7] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[8] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[9] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[10] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[11] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[12] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[13] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[14] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[15] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||