[1] |
Lehmann J, Joseph S. Biochar for Environmental Management: Science and Technology [M]. London: Earthscan Ltd, 2009.
|
[2] |
Bird M I, Wurster C M, Silva P H D, Bass A M, Denys R. Algal biochar-production and properties [J]. Bioresource Technology, 2011, 102 (2): 1886-1891.
|
[3] |
Cheng C H, Lehmann J, Thies J E, Burton S D, Engelhard M H. Oxidation of black carbon by biotic and abiotic processes [J]. Organic Geochemistry, 2006, 37: 1477-1488.
|
[4] |
Glaser B, Haumaier L, Guggenberger G, Zech W. The ‘Terra Preta' phenomenon: a model for sustainable agriculture in the humid tropics [J]. Naturwissenschaften, 2001, 88: 37-41.
|
[5] |
Gaskin J W, Steiner C, Harris K, Das K C, Bibens B. Effect of low-temperature pyrolysis conditions on biochar for agricultural use [J]. Transactions of the ASABE, 2008, 51 (6): 2061-2069.
|
[6] |
Kuhlbusch T A J, Crutzen P J. Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2 [J]. Global Biogeochem. Cycles, 1995, 9: 491-501.
|
[7] |
Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems—a review [J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11: 403-427.
|
[8] |
Fowles M. Black carbon sequestration as an alternative to bioenergy [J]. Biomass Bioenergy, 2007, 31: 426-432.
|
[9] |
Wardle D A, Nilsson M C, Zackrisson O. Fire-derived charcoal causes loss of forest humus [J]. Science, 2008, 320: 629.
|
[10] |
Steinbeiss S, Gleixner G, Antonietti M. Effect of biochar amendment on soil carbon balance and soil microbial activity [J]. Soil Biology & Biochemistry, 2009, 41: 1301-1310.
|
[11] |
Agrafiotia E, Bourasa G, Kalderisb D, Diamadopoulos E. Biochar production by sewage sludge pyrolysis [J]. Journal of Analytical and Applied Pyrolysis, 2013, 101: 72-78.
|
[12] |
Hossain M K, Strezov V, Chan K Y, Ziolkowski A, Nelson P F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar [J]. Journal of Environmental Management, 2011, 92 (1): 223-228.
|
[13] |
Lu H, Zhang W, Wang S, Zhuang L, Yang Y, Qiu R. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures [J]. Journal of Analytical and Applied Pyrolysis, 2013, 102: 137-143.
|
[14] |
Spokas K A. Review of the stability of biochar in soils: predictability of O:C molar ratios [J]. Carbon Management, 2010, 1 (2): 289-303.
|
[15] |
Méndeza A, Terradillosb M, Gascó G. Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures [J]. Journal of Analytical and Applied Pyrolysis, 2013, 102: 124-130.
|
[16] |
Topoliantz S, Ponge J-F, Ballof S. Manioc peel and charcoal: a potential organic amendment for sustainable soil fertility in the tropics [J]. Biol. Fert. Soils, 2005, 41 (1): 15-21.
|
[17] |
Zheng H, Wang Z, Deng X, Zhao J, Luo Y, Novak J, Herbert S, Xing, B. Characteristics and nutrient values of biochars produced from giant reed at different temperatures [J]. Bioresource Technology, 2013, 130: 463-471.
|
[18] |
Méndez A, Gómez A, Paz-Ferreiro J, Gascó G. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil [J]. Chemosphere, 2012, 89 (11): 1354-1359.
|
[19] |
Jin H, Arazo R O, Gao J, Capared S, Chang Z. Leaching of heavy metals from fast pyrolysis residues produced from different particle sizes of sewage sludge [J]. Journal of Analytical and Applied Pyrolysis, 2014, 109: 168-175.
|
[20] |
Yuan H R, Lu T, Zhao D D, Huang H Y, Noriyuki K, Chen Y. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge [J]. Journal of Analytical and Applied Pyrolysis, 2015, 112: 284-289.
|
[21] |
Yuan H R, Lu T, Zhao D D, Huang H Y, Noriyuki K, Chen Y. Influence of temperature on product distribution and biochar properties by municipal sludge pyrolysis [J]. J. Mater. Cycles. Waste Manag., 2013, 15: 357-361.
|
[22] |
Zimmerman A R. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar) [J]. Environ. Sci. Technol., 2010, 44: 1295-1301.
|
[23] |
Zibilske L M. Carbon mineralization//Weaver R W, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, et al. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties. Soil Science Society of America Book Series [M]. vol.5. Madison: Soil Science Society America Inc, 1994: 835-864.
|
[24] |
Mukherjee A, Zimmerman A R. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures [J]. Geoderma, 2013, 193-194: 122-130.
|
[25] |
Wang M C, Huang P M. Ring cleavage and oxidative transformation of pyrogallol catalyzed by Mn, Fe, Al, and Si oxides [J]. Soil Sci., 2000, 165 (12): 934-942.
|
[26] |
Peng X, Ye L L, C Wang C H, Zhou H, Sun B. Temperature-and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China [J]. Soil & Tillage Research, 2011, 112: 159-166.
|
[27] |
Cao X, Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation [J]. Bioresource Technology, 2010, 101: 5222-5228.
|