CIESC Journal ›› 2015, Vol. 66 ›› Issue (8): 2784-2794.DOI: 10.11949/j.issn.0438-1157.20150635
Previous Articles Next Articles
ZHU Chenjie1, DU Fengguang2, YING Hanjie1, OUYANG Pingkai1
Received:
2015-05-21
Revised:
2015-05-30
Online:
2015-08-05
Published:
2015-08-05
Supported by:
supported by the National Natural Science Foundation of China (21406110), Jiangsu Province Natural Science Foundation for Youths (BK20140938) and the State Key Laboratory of Motor Vehicle Biofuel Technology (KFKT2013001).
朱晨杰1, 杜风光2, 应汉杰1, 欧阳平凯1
通讯作者:
应汉杰
基金资助:
国家自然科学基金项目(21406110);江苏省科技计划项目(BK20140938);车用生物燃料技术国家重点实验室开放基金(KFKT2013001)。
CLC Number:
ZHU Chenjie, DU Fengguang, YING Hanjie, OUYANG Pingkai. Catalytic production of liquid hydrocarbon fuels and fuel additives from lignocellulosic platform molecules[J]. CIESC Journal, 2015, 66(8): 2784-2794.
朱晨杰, 杜风光, 应汉杰, 欧阳平凯. 木质纤维素基平台化合物催化转化制备液体燃料及燃料添加剂[J]. 化工学报, 2015, 66(8): 2784-2794.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20150635
[1] | Collard F X, Blin J. A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin [J]. Renewable Sustainable Energy Rev., 2014, 38: 594-608. |
[2] | Bulushev D A, Ross J R H. Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review [J]. Catal. Today, 2011, 171: 1-13. |
[3] | Lasa H D, Salaices E, Mazumder J, Lucky R. Catalytic steam gasification of biomass: catalysts, thermodynamics and kinetics [J]. Chem. Rev., 2011, 111: 5404-5433. |
[4] | Werpy T, Petersen G. Top value added chemicals from biomass volume (Ⅰ): Results of screening for potential candidates from sugars and synthesis gas [R]. OakRidge: US Department of Energy, 2004. |
[5] | Karinen R, Vilonen K, Niemelfi M. Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethyl furfural [J]. ChemSusChem, 2011, 4: 1002-1016. |
[6] | Putten R J V, Waal J C V D, Jong E D, Rasrendra C B, Heeres H J, Vries J G D. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources [J]. Chem. Rev., 2013, 113: 1499-1597. |
[7] | Huber G W, Chheda J N, Barrett C J, Dumesic J A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates [J]. Science, 2005, 308: 1446-1450. |
[8] | Huber G W, Dumesic J A. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery [J]. Catal. Today, 2006, 111: 119-132. |
[9] | West R M, Liu Z Y, Peter M, Gfirtner C A, Dumesic J A. Carbon-carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a biphasic system [J]. J. Mol. Catal. A: Chem., 2008, 296: 18-27. |
[10] | Olcay H, Subrahmanyam A V, Xing R, Lajoie J, Dumesic J A, Huber G W. Production of renewable petroleum refinery diesel and jet fuel feedstocks from hemicellulose sugar streams [J]. Energy Environ. Sci., 2013, 6: 205-216. |
[11] | West R M, Liu Z Y, Peter M, Dumesic J A. Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates [J]. ChemSusChem., 2008, 1: 417-424. |
[12] | Yang J, Li N, Li G, Wang W, Wang A, Wang X, Cong Y, Zhang T. Solvent-free synthesis of C10 and C11 branched alkanes from furfural and methyl isobutyl ketone [J]. ChemSusChem, 2013, 6: 1149-1152. |
[13] | Lange J P, Heide E V D, Buijtenen J V, Price R. Furfural—a promising platform for lignocellulosic biofuels [J]. ChemSusChem, 2012, 5: 150-166. |
[14] | Huang Y B, Yang Z, Dai J J, Guo Q X, Fu Y. Production of high quality fuels from lignocellulose-derived chemicals: a convenient C—C bond formation of furfural, 5-methylfurfural and aromatic aldehyde [J]. RSC Adv., 2012, 2: 11211-11214. |
[15] | Liu D, Chen E Y X. Diesel and alkane fuels from biomass by organocatalysis and metal-acid tandem catalysis [J]. ChemSusChem, 2013, 6: 2236-2239. |
[16] | Yang J, Li N, Li G, Wang W, Wang A, Wang X, Cong Y, Zhang T. Synthesis of renewable high-density fuels using cyclopentanone derived from lignocellulose [J]. Chem. Commun., 2014, 50: 2572-2574. |
[17] | James O O, Maity S, Usman L A, Ajanaku K O, Ajani O O, Siyanbola T O, Sahu S, Chaubey R. Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural [J]. Energy Environ. Sci., 2010, 3: 1833-1850. |
[18] | Sutton A D, Waldie F D, Wu R, Schlaf M, Pete Silks L A, Gordon J C. The hydrodeoxygenation of bioderived furans into alkanes [J]. Nat. Chem., 2013, 5: 428-432. |
[19] | Liu D, Chen E Y X. Integrated catalytic process for biomass conversion and upgrading to C12 furoin and alkane fuel [J]. ACS Catal., 2014, 4: 1302-1310. |
[20] | Zeitsch K J. Furfural Processes in the Chemistry and Technology of Furfural and Its Many By-products, Sugar Series[M]. Dordrecht: Elsevier Science, 2000: 36-74. |
[21] | Corma A, Torre O D L, Renz M, Villandier N. Production of high-quality diesel from biomass waste products [J]. Angew. Chem. Int. Ed., 2011, 50: 2375-2378. |
[22] | Corma A, Torre O D L, Renz M. High-quality diesel from hexose-and pentose-derived biomass platform molecules [J]. ChemSusChem, 2011, 4: 1574-1577. |
[23] | Corma A, Torre O D L, Renz M. Production of high quality diesel from cellulose and hemicellulose by the sylvan process: catalysts and process variables [J]. Energy Environ. Sci., 2012, 5: 6328-6344. |
[24] | Li S, Li N, Li G, Wang A, Cong Y, Wang X, Zhang T. Synthesis of diesel range alkanes with 2-methylfuran and mesityl oxide from lignocellulose [J]. Catal. Today, 2014, 234: 91-99. |
[25] | Li G, Li N, Wang Z, Li C, Wang A, Wang X, Cong Y, Zhang T. Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose [J]. ChemSusChem, 2012, 5: 1958-1966. |
[26] | Li G, Li N, Yang J, Wang A, Wang X, Cong Y, Zhang T. Synthesis of renewable diesel with the 2-methylfuran, butanal and acetone derived from lignocellulose [J]. Bioresour. Technol., 2013, 134: 66-72. |
[27] | Li G, Li N, Li S, Wang A, Cong Y, Wang X, Zhang T. Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan [J]. Chem. Commun., 2013, 49: 5727-5729. |
[28] | Sitthisa S, Resasco D E. Hydrodeoxygenation of furfural over supported metal catalysts: a comparative study of Cu, Pd and Ni [J]. Catal. Lett., 2011, 141: 784-791. |
[29] | Sitthisa S, An W, Resasco D E. Selective conversion of furfural to methylfuran over silica-supported Ni-Fe bimetallic catalysts [J]. J. Catal., 2011, 284: 90-101 |
[30] | Stevens J G, Bourne R A, Twigg M V, Poliakoff M. Real-time product switching using a twin catalyst system for the hydrogenation of furfural in supercritical CO2 [J]. Angew. Chem. Int. Ed., 2010, 49: 8856-8859. |
[31] | Haan R J, Lange J P. Gasoline composition and process for the preparation of alkylfurfuryl ether [P]: WO, 2009077606. 2009-06-25. |
[32] | Yu W J, Tang Y, Mo L Y, Chen P, Lou H, Zheng X M. One-step hydrogenation-esterification of furfural and acetic acid over bifunctional Pd catalysts for bio-oil upgrading [J]. Bioresour. Technol., 2011, 102: 8241-8246. |
[33] | Mallesham B, Sudarsanam P, Raju G, Reddy B M. Design of highly effcient Mo and W-promoted SnO2 solid acids for heterogeneous catalysis: acetalization of bio-glycerol [J]. Green Chem., 2013, 15: 478-489. |
[34] | Melero J A, Vicente G, Morales G, Paniagua M, Bustamante J. Oxygenated compounds derived from glycerol for biodiesel formulation: infiuence on EN 14214 quality parameters [J]. Fuel, 2010, 89: 2011-2018. |
[35] | Roman-Leshkov Y, Barrett C J, Liu Z Y, Dumesic J A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates [J]. Nature, 2007, 447: 982-986. |
[36] | Thananatthanachon T, Rauchfuss T B. Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent [J]. Angew. Chem. Int. Ed., 2010, 49: 6616-6618. |
[37] | Gruter G J M, Dautzenberg F. Method for the synthesis of 5-hydroxymethylfurfural ethers and their use [P]: US, 2011082304. 2011-04-07. |
[38] | Che P, Lu F, Zhang J, Huang Y, Nie X, Gao J, Xu J. Catalytic selective etherification of hydroxyl groups in 5-hydro-xymethyl-furfural over H4SiW12O40/MCM-41 nanospheres for liquid fuel production [J]. Bioresour. Technol., 2012, 119: 433-436. |
[39] | Balakrishnan M, Sacia E R, Bell A T. Etherification and reductive etherification of 5-(hydroxymethyl)furfural: 5-(alkoxymethyl) furfurals and 2,5-bis(alkoxymethyl) furans as potential bio-diesel candidates [J]. Green Chem., 2012, 14: 1626-1634. |
[40] | Lanzafame P, Temi D M, Perathoner S, Centi G, Macario A, Aloise A, Giordano G. Etherification of 5-hydroxymethyl-2-furfural (HMF) with ethanol to biodiesel components using mesoporous solid acidic catalysts [J]. Catal. Today, 2011, 175: 435-441. |
[41] | Wang H, Wang Y, Deng T, Chen C, Zhu Y, Hou X. Carbocatalyst in biorefinery: selective etherification of 5-hydroxymethylfurfural to 5,5’(oxy-bis(methylene))bis-2-furfural over graphene oxide [J]. Catal. Commun., 2015, 59: 127-130. |
[42] | Mascal M, Nikitin E B. Direct, high-yield conversion of cellulose into biofuel [J]. Angew. Chem. Int. Ed., 2008, 47: 7924-7926. |
[43] | Liu B, Zhang Z, Deng K. Efficient one-pot synthesis of 5-(ethoxymethyl)furfural from fructose catalyzed by a novel solid catalyst [J]. Ind. Eng. Chem. Res., 2012, 51: 15331-15336. |
[44] | Yang Y, Abu-Omar M M, Hu C W. Heteropolyacid catalyzed conversion of fructose, sucrose, and inulin to 5-ethoxymethylfurfural, a liquid biofuel candidate [J]. Appl. Energy, 2012, 99: 80-84. |
[45] | Ras E J, Maisuls S, Haesakkers P, Gruter G J, Rothenberg G. Selective hydrogenation of 5-ethoxymethylfurfural over alumina-supported heterogeneous catalysts [J]. Adv. Synth. Catal., 2009, 351: 3175-3185. |
[46] | Krystof M, Perez-Sanchez M, de Maria P D. Lipase-catalyzed (trans)esterification of 5-hydroxymethyl furfural and separation from HMF esters using deep-eutectic solvents [J]. ChemSusChem, 2013, 6: 630-634. |
[47] | Rackemann D W, Doherty W O S. The conversion of lignocellulosics to levulinic acid [J]. Biofuels, Bioprod. Bioref., 2011, 5: 198-214. |
[48] | Bozell J J. Connecting biomass and petroleum processing with a chemical bridge [J]. Science, 2010, 329: 522-523. |
[49] | Wright W R H, Palkovits R. Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone [J]. ChemSusChem, 2012, 5: 1657-1667. |
[50] | Bond J Q, Alonso D M, Wang D, West R M, Dumesic J A. Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels [J]. Science, 2010, 327: 1110-1114. |
[51] | Bond J Q, Wang D, Alonso D M, Dumesic J A. Interconversion between γ-valerolactone and pentenoic acid combined with decarboxylation to form butene over silica/alumina [J]. J. Catal., 2011, 281: 290-299. |
[52] | Sen S M, Gurbuz E I, Wettstein S G, Alonso D M, Dumesic J A, Maravelias C T. Production of butene oligomers as transportation fuels using butene for esterification of levulinic acid from lignocellulosic biomass: process synthesis and technoeconomic evaluation [J]. Green Chem., 2012, 14: 3289-3294. |
[53] | Serrano-Ruiz J C, Braden D J, West R M, Dumesic J A. Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen [J]. Appl. Catal., B, 2010, 100: 184-189. |
[54] | Serrano-Ruiz J C, Wang D, Dumesic J A. Catalytic upgrading of levulinic acid to 5-nonanone [J]. Green Chem., 2010, 12: 574-577. |
[55] | Alonso D M, Bond J Q, Serrano-Ruiz J C, Dumesic J A. Production of liquid hydrocarbon transportation fuels by oligomerization of biomass-derived C9 alkenes [J]. Green Chem., 2010, 12: 992-999. |
[56] | Mascal M, Dutta S, Gandarias I. Hydrodeoxygenation of the angelica lactone dimer, a cellulose-based feedstock: simple, high-yield synthesis of branched C7—C10 gasoline-like hydrocarbons [J]. Angew. Chem. Int. Ed., 2014, 53: 1854-1857. |
[57] | Xin J, Zhang S, Yan D, Ayodele O, Lu X, Wang J. Formation of C—C bonds for the production of bio-alkanes under mild conditions [J]. Green Chem., 2014, 16: 3589-3595. |
[58] | Schwartz T J, van Heiningen A R P, Wheeler M C. Energy densification of levulinic acid by thermal deoxygenation [J]. Green Chem., 2010, 12: 1353-1356. |
[59] | Case P A, van Heiningen A R P, Wheeler M C. Liquid hydrocarbon fuels from cellulosic feedstocks via thermal deoxygenation of levulinic acid and formic acid salt mixtures [J]. Green Chem., 2012, 14: 85-89. |
[60] | Horváth I T, Mehdi H, Fábos V, Boda L, Mika LT. g-Valerolactone—a sustainable liquid for energy and carbon-based chemicals [J]. Green Chem., 2008, 10: 238-242. |
[61] | Bruno T J, Wolk A, Naydich A. Composition-explicit distillation curves for mixtures of gasoline and diesel fuel with γ-valerolactone [J]. Energ Fuel, 2010, 24: 2758-2767. |
[62] | Serrano-Ruiz J C, West R M, Durnesic J A. Catalytic conversion of renewable biomass resources to fuels and chemicals [J]. Annu. Rev. Chem. Biomol., 2010, 1: 79-110 |
[63] | Bui L, Luo H, Gunther W R, Roman-Leshkov Y. Domino reaction catalyzed by zeolites with Brønsted and Lewis acid sites for the production of γ-valerolactone from furfural [J]. Angew. Chem. Int. Ed., 2013, 52: 8022-8025. |
[64] | Heeres H, Handana R, Chunai D, Rasrendra C B, Girisuta B, Heeres H J. Combined dehydration/(transfer)-hydrogenation of C6-sugars (D-glucose and D-fructose) to γ-valerolactone using ruthenium catalysts [J]. Green Chem., 2009, 11: 1247-1255. |
[65] | Pan T, Deng J, Xu Q, Xu Y, Guo Q X, Fu Y. Catalytic conversion of biomass-derived levulinic acid to valerate esters as oxygenated fuels using supported ruthenium catalysts [J]. Green Chem., 2013, 15: 2967-2974. |
[66] | Chan-Thaw C E, Marelli M, Psaro R, Ravasio N, Zaccheria F. New generation biofuels: γ-valerolactone into valeric esters in one pot [J]. RSC Adv., 2013, 3: 1302-1306 |
[67] | Lange J P, Price R, Ayoub P M, Louis J, Petrus L, Clarke L, Gosselink H. Valeric biofuels: a platform of cellulosic transportation fuels [J]. Angew. Chem., Int. Ed., 2010, 49: 4479-4483. |
[68] | Geilen F M A, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W. Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system [J]. Angew. Chem. Int. Ed., 2010, 49: 5510-5514. |
[69] | Upare P P, Lee J M, Hwang Y K, Hwang D W, Lee J H, Halligudi S B, Hwang J S, Chang J S. Direct hydrocyclization of biomass-derived levulinic acid to 2-methyltetrahydrofuran over nanocomposite copper/silica catalysts [J]. ChemSusChem, 2011, 4: 1749-1752. |
[70] | Du X L, Bi Q Y, Liu Y M, Cao Y, He H Y, Fan K N. Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived γ-valerolactone into 1,4-pentanediol or 2-methyltetrahydrofuran [J]. Green Chem., 2012, 14: 935-939. |
[71] | Peng L, Lin L, Li H, Yang Q. Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts [J]. Appl. Energy, 2011, 88: 4590-4596. |
[72] | Gurbuz E I, Alonso D M, Bond J Q, Dumesic J A. Reactive extraction of levulinate esters and conversion to γ-valerolactone for production of liquid fuels [J]. ChemSusChem, 2011, 4: 357-361. |
[73] | Hu X, Li C Z. Levulinic esters from the acid-catalysed reactions of sugars and alcohols as part of a bio-refinery [J]. Green Chem., 2011, 13: 1676-1679. |
[74] | Tominaga K, Mori A, Fukushima Y, Shimada S, Sato K. Mixed-acid systems for the catalytic synthesis of methyl levulinate from cellulose [J]. Green Chem., 2011, 13: 810-812. |
[75] | Mao R L V, Zhao Q, Dima G, Petraccone D. New process for the acid-catalyzed conversion of cellulosic biomass (AC3B) into alkyl levulinates and other esters using a unique one-pot system of reaction and product extraction [J]. Catal. Lett., 2011, 141: 271-276. |
[76] | Hayes D J. An examination of biorefining processes, catalysts and challenges [J]. Catal. Today, 2009, 145: 138-151. |
[77] | Klass D L. Biomass for Renewable Energy, Fuels and Chemicals[M]. San Diego: Academic Press, 1998. |
[78] | Yan N, Zhao C, Luo C, Dyson P J, Liu H, Kou Y. One-step conversion of cellobiose to C6-alcohols using a ruthenium nanocluster catalyst [J]. J. Am. Chem. Soc., 2006, 128: 8714-8715. |
[79] | Huber G W, Cortright R D, Dumesic J A. Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates [J]. Angew. Chem. Int. Ed., 2004, 43: 1549-1551. |
[80] | Kirilin A V, Tokarev A V, Murzina E V, Kustov L M, Mikkola J P, Murzin D Y. Reaction products and transformations of intermediates in the aqueous-phase reforming of sorbitol [J]. ChemSusChem, 2010, 3: 708-718. |
[81] | Beeck B O D, Dusselier M, Geboers J, Holsbeek J, Morre E, Oswald S, Giebeler L, Sels B F. Direct catalytic conversion of cellulose to liquid straight-chain alkanes [J]. Energy Environ. Sci., 2015, 8: 230-240. |
[82] | Kunkes E L, Simonetti D A, West R M, Serrano-Ruiz J C, Gartner C A, Dumesic J A. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes [J]. Science, 2008, 322: 417-421. |
[1] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[2] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[3] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[4] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[5] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[6] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[7] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
[8] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[9] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
[10] | Jianxin CHEN, Ruijie ZHU, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of cellulose-derived biomass porous carbon and its supercapacitor performance [J]. CIESC Journal, 2022, 73(9): 4194-4206. |
[11] | Zeguang HAO, Qian ZHANG, Zenglin GAO, Hongwen ZHANG, Zeyu PENG, Kai YANG, Litong LIANG, Wei HUANG. Study on synergistic effect of biomass and FCC slurry co-pyrolysis [J]. CIESC Journal, 2022, 73(9): 4070-4078. |
[12] | Dongwang ZHANG, Hairui YANG, Tuo ZHOU, Zhong HUANG, Shiyuan LI, Man ZHANG. Cold-state experimental study on ash deposition of convection heating surface of biomass boiler [J]. CIESC Journal, 2022, 73(8): 3731-3738. |
[13] | Xinhua LIU, Zhennan HAN, Jian HAN, Bin LIANG, Nan ZHANG, Shanwei HU, Dingrong BAI, Guangwen XU. Principle and technology of low-NO x decoupling combustion based on restructuring reactions [J]. CIESC Journal, 2022, 73(8): 3355-3368. |
[14] | Mai ZHANG, Yao TIAN, Zhiqi GUO, Ye WANG, Guangjin DOU, Hao SONG. Design and optimization of photocatalysis-biological hybrid system for green synthesis of fuels and chemicals [J]. CIESC Journal, 2022, 73(7): 2774-2789. |
[15] | Jun ZHANG, Sheng HU, Jing GU, Haoran YUAN, Yong CHEN. Catalytic hydrogenation of furfural over magnetic polymetallic materials derived from electroplating sludge in methanol [J]. CIESC Journal, 2022, 73(7): 2996-3006. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||