[1] |
Kang B, Ceder G. Battery materials for ultrafast charging and discharging [J]. Nature, 2009, 458(7235): 190-193.
|
[2] |
Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices [J]. Science, 2011, 334(6058): 928-935.
|
[3] |
Jiang H, Ma J, Li C Z. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes [J]. Adv. Mater., 2012, 24(30): 4197-4202.
|
[4] |
Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries [J]. Nature, 2000, 407(6803): 496-499.
|
[5] |
Zhi M J, Xiang C C, Li J T, Wu N Q. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review [J]. Nanoscale, 2013, 5(1): 72-88.
|
[6] |
Zhao Y, Jiang L. Hollow micro/nanomaterials with multilevel interior structures [J]. Adv. Mater., 2009, 21(36): 3621-3638.
|
[7] |
Wang Z Y, Zhou L, Lou X W. Metal oxide hollow nanostructures for lithium-ion batteries [J]. Adv. Mater., 2012, 24(14): 1903-1911.
|
[8] |
Kong D Z, Luo J S, Wang Y L, Ren W N, Yu T, Luo Y S, Yang Y P, Cheng C W. Three-dimensional Co3O4@MnO2 hierarchical nano-needle arrays: morphology control and electrochemical energy storage [J]. Adv. Func. Mater., 2014, 24(24): 3815-3826..
|
[9] |
Zhang L, Wu H B, Yan Y, Wang X, Lou X W. Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting [J]. Energy Environ. Sci., 2014, 7(10): 3302-3306.
|
[10] |
Chao D L, Xia X H, Liu J L, Fan Z X, Ng C F, Lin J Y, Zhang H, Shen Z X, Fan H J. A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries [J]. Adv. Mater., 2014, 26(33): 5794-5800.
|
[11] |
Lu Z Z, Wang H K. Fluoride-assisted coaxial growth of SnO2 over-layers on multiwall carbon nanotubes with controlled thickness for lithium ion batteries [J]. Cryst. Eng. Comm., 2014, 16(4): 550-555.
|
[12] |
Wang J, Liu J L, Chao D L, Yan J X, Lin J Y, Shen Z X. Self-assembly of honeycomb-like MoS2 nanoarchitectures anchored into graphene foam for enhanced lithium-ion storage [J]. Adv. Mater., 2014, 26(42): 7162-7169.
|
[13] |
Fister T T, Esbenshade J, Chen X, Long B R, Shi B, Schlepütz C M, Gewirth A A, Bedzyk M J, Fenter P. Electrodes: lithium intercalation behavior in multilayer silicon electrodes [J]. Adv. Energy Mater., 2014, 4(7). DOI: 10.1002/aenm. 201470034
|
[14] |
Zhang J N, Wang K X, Xu Q, Zhou Y C, Cheng F Y, Guo S J. Beyond yolk-shell nanoparticles: Fe3O4@Fe3C core@shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage [J]. ACS Nano, 2015, 9(3): 3369-3376.
|
[15] |
Cai Z Y, Xu L, Yan M Y, Han C H, He L, Hercule K M, Niu C J, Yuan Z F, Xu W W, Qu L B, Zhao K N, Mai L Q. Manganese oxide/carbon yolk-shell nanorod anodes for high capacity lithium batteries [J]. Nano Lett., 2015, 15(1): 738-744.
|
[16] |
Wang L, Dong Z H, Wang Z G, Zhang F X, Jin J. Layered α-Co(OH)2 nanocones as electrode materials for pseudocapacitors: understanding the effect of interlayer space on electrochemical activity [J]. Adv. Funct. Mater., 2013, 23(21): 2758-2764.
|
[17] |
Dai Y H, Jiang H, Hu Y J, Li C Z. Hydrothermal synthesis of hollow Mn2O3 nanocones as anode material for Li-ion batteries [J]. RSC Adv., 2013, 3(43): 19778-19781.
|
[18] |
Jiang H, Fu Y, Hu Y J, Yan C Y, Zhang L, Lee P S, Li C Z. Hollow LiMn2O4 nanocones as superior cathode materials for lithium-ion batteries with enhanced power and cycle performances [J]. Small, 2014, 10(6): 1096-1100.
|
[19] |
Simon P, Gogotsi Y. Materials for electrochemical capacitors [J]. Nat. Mater., 2008, 7(11): 845-854.
|
[20] |
Wang C, Zhou Y, Ge M Y, Xu X B, Zhang Z L, Jiang J Z. Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity [J]. J. Am. Chem. Soc., 2010, 132(1): 46-47.
|
[21] |
Brezesinski T, Wang J, Tolbert S H, Dunn B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors [J]. Nat. Mater., 2010, 9(2): 146-151.
|
[22] |
Jiang H, Zhao T, Li C Z, Ma J. Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors [J]. J. Mater. Chem., 2011, 21: 3818-3823.
|
[23] |
Jiang H, Zhao T, Ma J, Yan C Y, Li C Z. Ultrafine manganese dioxide nanowire network for high-performance supercapacitors [J]. Chem. Commun., 2011, 47(4): 1264-1266.
|
[24] |
Tang X, Li H, Liu Z H, Yang Z, Wang Z. Preparation and capacitive property of manganese oxide nanobelt bundles with birnessite-type structure [J]. J. Power Sources, 2011, 196(2): 855-859.
|
[25] |
Xiao W, Xia H, Fuh J Y H, Lu L. Growth of single-crystal a -MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties [J]. J. Power Sources, 2009, 193(2): 935-938.
|
[26] |
Jiang H, Sun T, Li C Z, Ma J. Hierarchical porous nanostructures assembled from ultrathin MnO2 nanoflakes with enhanced supercapacitive performances [J]. J. Mater. Chem., 2012, 22(6): 2751-2756.
|
[27] |
Xia Y, Xiao Z, Dou X, Huang H, Lu X H, Yan R J, Gan Y P, Zhu W H, Tu J P, Zhang W K, Tao X Y. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries [J]. ACS Nano, 2013, 7(8): 7083-7092..
|
[28] |
Zhan D, Zhang Q G, Hu X H, Peng T Y. Single-crystal b-MnO2 hollow bipyramids: synthesis and application in lithium ion batteries [J]. RSC Adv., 2013, 3(15): 5141-5147.
|
[29] |
Guo C X, Wang M, Chen T, Lou X W, Li C M. A hierarchically nanostructured composite of MnO2/conjugated polymer/graphene for high-performance lithium ion batteries [J]. Adv. Energy Mater., 2011, 1(5): 736-741.
|
[30] |
Xia H, Lai M O, Lu L. Nanoflaky MnO2/carbon nanotube nano-composites as anode materials for lithium-ion batteries [J]. J. Mater. Chem., 2010, 20(33): 6896-6902.
|
[31] |
Jiang H, Yang L P, Li C Z, Yan C Y, Lee P S, Ma J. High-rate electrochemical capacitors from highly graphitic carbon-tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires [J]. Energy Environ. Sci., 2011, 4(5): 1813-1819.
|
[32] |
Jiang H, Ma J, Li C Z. Mesoporous carbon incorporated metal oxides nanomaterials as supercapacitor electrodes [J]. Adv. Mater., 2012, 24(30): 4197-4202.
|
[33] |
Jiang H, Hu Y J, Guo S J, Yan C Y, Lee P S, Li C Z. Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries [J]. ACS Nano, 2014, 8(6): 6038-6046.
|
[34] |
Chen H, Zhou S, Chen M, Wu L. Reduced graphene oxide-MnO2 hollow sphere hybrid nanostructures as high-performance electrochemical capacitors [J]. J. Mater. Chem., 2012, 22(48): 25207-25216.
|
[35] |
Zhu J, He J. Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors [J]. ACS Appl. Mater. Inter., 2012, 4(3): 1770-1776.
|
[36] |
Jiang H, Dai Y H, Hu Y J, Chen W N, Li C Z. Nanostructured ternary nanocomposite of rGO/CNTs/MnO2 for high-rate supercapacitors [J]. ACS Sustainable Chem. Eng., 2014, 2(1): 70-74.
|
[37] |
Jiang H, Li C Z, Sun T, Ma J. High-performance supercapacitor material based on Ni(OH)2 nanowire-MnO2 nanoflakes core-shell nanostructures [J]. Chem. Commun., 2012, 48(20): 2606-2608.
|
[38] |
Jiang H, Ma J, Li C Z. Polyaniline-MnO2 coaxial nanofiber with hierarchical structure for high-performance supercapacitors [J]. J. Mater. Chem., 2012, 22(33): 16939-16942.
|