CIESC Journal ›› 2016, Vol. 67 ›› Issue (11): 4634-4642.DOI: 10.11949/j.issn.0438-1157.20160337
Previous Articles Next Articles
HE Zhiqiao, CHEN Jinping, TONG Lili, TANG Juntao, CHEN Jianmeng, SONG Shuang
Received:
2016-03-24
Revised:
2016-07-25
Online:
2016-11-05
Published:
2016-11-05
Supported by:
supported by the National Natural Science Foundation of China (21477117, 21177115) and the Natural Science Foundation of Zhejiang Province (LR13B070002, LR14E080001).
何志桥, 陈锦萍, 童丽丽, 汤俊涛, 陈建孟, 宋爽
通讯作者:
宋爽,ss@zjut.edu.cn
基金资助:
国家自然科学基金项目(21477117,21177115);浙江省自然科学基金杰出青年项目(LR13B070002,LR14E080001)。
CLC Number:
HE Zhiqiao, CHEN Jinping, TONG Lili, TANG Juntao, CHEN Jianmeng, SONG Shuang. BiOCl/g-C3N4 heterojunction catalyst for efficient photocatalytic reduction of CO2 under visible light[J]. CIESC Journal, 2016, 67(11): 4634-4642.
何志桥, 陈锦萍, 童丽丽, 汤俊涛, 陈建孟, 宋爽. BiOCl/g-C3N4异质结催化剂可见光催化还原CO2[J]. 化工学报, 2016, 67(11): 4634-4642.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20160337
[1] | ZHANG Q H, HAN W D, HONG Y J, et al. Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst[J]. Catal. Today, 2009, 148(3/4):335-340. |
[2] | XIE S, WANG Y, ZHANG Q, et al. MgO and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water[J]. ACS Catal., 2014, 4(10):3644-3653. |
[3] | HE Z Q, WANG D, FANG H Y, et al. Highly efficient and stable Ag/AgIO3 particles for photocatalytic reduction of CO2 under visible light[J]. Nanoscale, 2014, 6(18):10540-10544. |
[4] | 何志桥, 林海燕, 陈建孟, 等. Ag3PO4形貌和晶面对Ag/Ag3PO4等离子体催化剂光催化还原CO2的影响[J]. 化工学报, 2015, 66(12):4850-4857. HE Z Q, LIN H Y, CHEN J M, et al. Effect of morphology and exposed facets of Ag3PO4 on photocatalytic reduction of CO2 to CH3OH over Ag/Ag3PO4 plasmonic photocatalysts[J]. CIESC Journal, 2015, 66(12):4850-4857. |
[5] | WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat. Mater., 2009, 8(1):76-80. |
[6] | CAO S W, YU J G. g-C3N4-based photocatalysts for hydrogen generation[J]. J. Phys. Chem. Lett., 2014, 5(12):2101. |
[7] | 张金水, 王博, 王心晨. 氮化碳聚合物半导体光催化[J]. 化学进展, 2014, 26(1):19-29. ZHANG J S, WANG B, WANG X C. Carbon nitride polymeric semiconductor for photocatalysis[J]. Prog. Chem., 2014, 26(1):19-29. |
[8] | ZHANG W, ZHANG Q, DONG F. Visible-light photocatalytic removal of NO in air over BiOX (X=Cl, Br, I) single-crystal nanoplates prepared at room temperature[J]. Ind. Eng. Chem. Res., 2013, 52(20):6740-6746. |
[9] | CHANG X F, HUANG J, CHENG C, et al. BiOX (X=Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source:characterization and catalytic performance[J]. Catal. Commun., 2010, 11(5):460-464. |
[10] | 王晓雯, 张小超, 樊彩梅. BiOCl基光催化材料的研究进展[J]. 化工进展, 2014, 33(1):124-132. WANG X W, ZHANG X C, FAN C M. Research and development of BiOCl-based photocatalytic materials[J]. Chem. Ind. Eng. Prog., 2014, 33(1):124-132. |
[11] | WANG D H, GAO G Q, ZHANG Y W, et al. Nanosheet-constructed porous BiOCl with dominant {001} facets for superior photosensitized degradation[J]. Nanoscale, 2012, 4(24):7780-7785. |
[12] | LIU Y Y, SON W J, LU J B, et al. Composition dependence of the photocatalytic activities of BiOCl(1-x)Br(x) solid solutions under visible light[J]. Chem.-Eur. J., 2011, 17(34):9342-9349. |
[13] | 于洪涛, 全燮. 纳米异质结光催化材料在环境污染控制领域的研究进展[J]. 化学进展, 2009, 2/3(21):406-419. YU H T, QUAN X. Nano-heterojunction photocatalytic materials in environmental pollution controlling[J]. Prog. Chem., 2009, 2/3(21):406-419 |
[14] | SHI S, GONDAL M A, AL-SAADI A A, et al. Facile preparation of g-C3N4 modified BiOCl hybrid photocatalyst and vital role of frontier orbital energy levels of model compounds in photocactivity enhancement[J]. J. Colloid Interf. Sci., 2014, 416:212-219. |
[15] | CHANG F, XIE Y, ZHANG J, et al. Construction of exfoliated g-C3N4 nanosheets-BiOCl hybrids with enhanced photocatalytic performance[J]. RSC Adv., 2014, 4(54):28519-28528. |
[16] | DONG F, WU L W, SUN Y J, et al. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts[J]. J. Mater. Chem., 2011, 21(39):15171-15174. |
[17] | MARTHA S, NASHIM A, PARIDA K M. Facile synthesis of highly active g-C3N4 for efficient hydrogen production under visible light[J]. J. Mater. Chem. A, 2013, 1(26):7816-7824. |
[18] | JIANG J, ZHAO K, XIAO X, et al. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets[J]. J. Am. Chem. Soc., 2012, 134(10):4473-4476. |
[19] | ZHANG Z, ZHOU Y, YU S, et al. Ag-BiOCl nanocomposites prepared by the oxygen vacancy induced photodeposition method with improved visible light photocatalytic activity[J]. Mater. Lett., 2015, 150(1):97-100. |
[20] | 张笛, 肖清贵, 张炳烛, 等. 氯氧化铋在盐酸溶液中溶解度的测定和关联[J]. 化工学报, 2014, 65(6):1987-1992. ZHANG D, XIAO Q G, ZHANG B Z, et al. Determination and correlation of solubility of bismuth oxychloride inhydrochloric acid solution[J]. CIESC Journal, 2014, 65(6):1987-1992. |
[21] | SU Q, SUN J, WANG J Q, et al. Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates[J]. Catal. Sci. Technol., 2014, 4(6):1556-1562. |
[22] | SANO T, TSUTSUI S, KOIKE K, et al. Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase[J]. J. Mater. Chem. A, 2013, 1(21):6489-6496. |
[23] | HU Y, LI D Z, ZHENG Y, et al. BiVO4/TiO2 nanocrystalline heterostructure:a wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene[J]. Appl. Catal. B-Environ., 2011, 104(1/2):30-36. |
[24] | ZHANG Z, SHAO C, LI X, et al. Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity[J]. ACS Appl. Mater. Inter., 2010, 2(10):2915-2923. |
[25] | YAN S C, LI Z S, ZOU Z G. Photodegradation of Rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation[J]. Langmuir, 2010, 26(6):3894-3901. |
[26] | PRANGER L, TANNENBAUM R. Biobased nanocomposites prepared by in situ polymerization of furfuryl alcohol with cellulose whiskers or montmorillonite clay[J]. Macromolecules, 2008, 41(22):8682-8687. |
[27] | WANG M, LIU Q, CHE Y S, et al. Characterization and photocatalytic properties of N-doped BiVO4 synthesized via a sol-gel method[J]. J. Alloy. Compd., 2013, 548:70-76. |
[28] | ZHANG J, XIA J X, YIN S, et al. Improvement of visible light photocatalytic activity over flower-like BiOCl/BiOBr microspheres synthesized by reactable ionic liquids[J]. Colloid. Surface. A, 2013, 420:89-95. |
[29] | YE L Q, DENG K J, XU F, et al. Increasing visible-light absorption for photocatalysis with black BiOCl[J]. Phys. Chem. Chem. Phys., 2012, 14(1):82-85. |
[30] | ONG W J, PUTRI L K, TAN L L, et al. Heterostructured AgX/g-C3N4(X=Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach:emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide[J]. Appl. Catal. B-Environ., 2016, 180:530-543. |
[31] | CAO J, LUO B, LIN H, et al. Thermodecomposition synthesis of WO3/H2WO4 heterostructures with enhanced visible light photocatalytic properties[J]. Appl. Catal. B-Environ., 2012, 111/112(2):288-296. |
[32] | HE Z Q, SHI Y Q, GAO C, et al. BiOCl/BiVO4 p-n heterojunction with enhanced photocatalytic activity under visible-light irradiation[J]. J. Phys. Chem. C, 2014, 118(1):389-398. |
[33] | CHAI S Y, YONG J K, JUNG M H, et al. Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst[J]. J. Catal., 2009, 262(1):144-149. |
[34] | 张磊, 杨国锐, 常薇, 等. ZnxCd(1-x)S/TiO2异质结复合纤维的制备及其光催化性能[J]. 化工进展, 2013, 32(4):863-868. ZHANG L, YANG G R, CHANG W, et al. Preparation and photocatalytic activity of ZnxCd1-xS/TiO2 heterostructures composite fibers[J]. Chem. Ind. Eng. Prog., 2013, 32(4):863-868. |
[35] | LEE D, YONG K. Partial conversion reaction of ZnO nanowires to ZnSe by a simple selenization method and their photocatalytic activities[J]. Mater. Chem. Phys., 2012, 137(1):194-199. |
[36] | DAI K, LU L, LIANG C, et al. A high efficient graphitic-C3N4/BiOI/graphene oxide ternary nanocomposite heterostructured photocatalyst with graphene oxide as electron transport buffer material.[J]. Dalton T., 2015, 44(17):7903-7910 |
[37] | LI X, WEN J Q, LOW J X, et al. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel[J]. Sci. China Mater., 2014, 57(1):70-100. |
[38] | SHOWN I, HSU H C, CHANG Y C, et al. Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide[J]. Nano. Lett., 2014, 14(11):6097-6103. |
[39] | SUN M L, ZHAO Q H, DU C F, et al. Enhanced visible light photocatalytic activity in BiOCl/SnO2:heterojunction of two wide band-gap semiconductors[J]. RSC Adv., 2015, 5(29):22740-22752. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain [J]. CIESC Journal, 2023, 74(S1): 1-7. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[5] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[6] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[7] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[8] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[9] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[10] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[11] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[12] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[13] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[14] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[15] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||