[1] |
胡艳军, 管志超, 郑小艳. 污水污泥裂解油中多环芳烃的分析[J]. 化工学报, 2013, 64(6):2227-2231. HU Y J, GUAN Z C, ZHENG X Y. Analysis on polycyclic aromatic hydrocarbons (PAHs) in pyrolysis oil from municipal wastewater sewage sludge[J]. CIESC Journal, 2013, 64(6):2227-2231.
|
[2] |
SAKTAYWIN W, TSUNO H, NAGARE H, et al. Advanced sewage treatment process with excess sludge reduction and phosphorus recovery[J]. Water Research, 2005, 39(5):902-910.
|
[3] |
YUAN X Z, HUANG H J, ZENG G M, et al. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge[J]. Bioresource Technology, 2011, 102(5):4104-4110.
|
[4] |
MÉNDEZ A, PAZ-FERREIRO J, ARAUJO F, et al. Biochar from pyrolysis of deinking paper sludge and its use in the treatment of a nickel polluted soil[J]. Journal of Analytical and Applied Pyrolysis, 2014, 107:46-52.
|
[5] |
DEVI P, SAROHA A K. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals[J]. Bioresource Technology, 2014, 162:308-315.
|
[6] |
PAZ-FERREIRO J, GASCÓ G, GUTIÉRREZ B, et al. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil[J]. Biology and Fertility of Soils, 2011, 48(5):511-517.
|
[7] |
WAQAS M, LI G, KHAN S, et al. Application of sewage sludge and sewage sludge biochar to reduce polycyclic aromatic hydrocarbons (PAH) and potentially toxic elements (PTE) accumulation in tomato[J]. Environmental Science and Pollution Research, 2015, 22(16):12114-12123.
|
[8] |
DEVI P, SAROHA A K. Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge[J]. Bioresource Technology, 2015, 192:312-320.
|
[9] |
SINGH B, SINGH B P, COWIE A L. Characterisation and evaluation of biochars for their application as a soil amendment[J]. Soil Research, 2010, 48(7):516-525.
|
[10] |
CHEN T, ZHOU Z Y, XU S, et al. Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge[J]. Bioresource Technology, 2015, 190:388-394.
|
[11] |
KISTLER R C, WIDMER F, BRUNNER P H. Behavior of chromium, nickel, copper, zinc, cadmium, mercury, and lead during the pyrolysis of sewage sludge[J]. Environmental Science & Technology, 1987, 21(7):704-708.
|
[12] |
YUAN H, LU T, HUANG H Y, et al. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112:284-289.
|
[13] |
范世锁, 汤婕, 程燕, 等. 污泥基生物炭中重金属的形态分布及潜在生态风险研究[J]. 生态环境学报, 2015, 24(10):1739-1744. FAN S S, TANG J, CHENG Y, et al. Investigation of the speciation of heavy metals in sludge-derived biochar and its potential ecological risk[J]. Ecology and Environmental Sciences, 2015, 24(10):1739-1744.
|
[14] |
程伟凤, 李慧, 杨艳琴, 等. 城市污泥厌氧发酵残渣热解制备生物炭及其氮磷吸附研究[J]. 化工学报, 2016, 67(4):1541-1548. CHENG W F, LI H, YANG Y Q, et al. Preparation of biochar with fermented sludge residue by pyrolysis and adsorption of nitrogen and phosphorus[J]. CIESC Journal, 2016, 67(4):1541-1548.
|
[15] |
PALA M, KANTARLI I C, BUYUKISIK H B, et al. Hydrothermal carbonization and torrefaction of grape pomace:a comparative evaluation[J]. Bioresource Technology, 2014, 161:255-262.
|
[16] |
KHAN S, CHAO C, WAQAS M, et al. Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil[J]. Environmental Science & Technology, 2013, 47(15):8624-8632.
|
[17] |
HUANG H J, YUAN X Z, ZENG G M, et al. Quantitative evaluation of heavy metals' pollution hazards in liquefaction residues of sewage sludge[J]. Bioresource Technology, 2011, 102(22):10346-10351.
|
[18] |
HOSSAIN M K, STREZOV V, CHAN K Y, et al. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar[J]. Journal of Environmental Management, 2011, 92(1):223-228.
|
[19] |
THIPKHUNTHOD P, MEEYOO V, RANGSUNVIGIT P, et al. Describing sewage sludge pyrolysis kinetics by a combination of biomass fractions decomposition[J]. Journal of Analytical and Applied Pyrolysis, 2007, 79(1):78-85.
|
[20] |
SUN Y F, LIU L N, WANG Q, et al. Pyrolysis products from industrial waste biomass based on a neural network model[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120:94-102.
|
[21] |
DEMIRBAS A. Gaseous products from biomass by pyrolysis and gasification:effects of catalyst on hydrogen yield[J]. Energy Conversion and Management, 2002, 43(7):897-909.
|
[22] |
LI S G, XU S P, LIU S Q, et al. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas[J]. Fuel Processing Technology, 2004, 85(8/9/10):1201-1211.
|
[23] |
王伟, 蓝煜昕, 李明, 等. 生物质废弃物快速热解制取富氢气体的实验研究[J]. 环境工程学报, 2007, 1(8):114-119. WANG W, LAN Y X, LI M, et al. Fast pyrolysis of biomass waste for hydrogen-rich gas[J]. Chinese Journal of Environmental Engineering, 2007, 1(8):114-119.
|
[24] |
LI M, LI W, LIU S X. Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose[J]. Carbohydrate Research, 2011, 346(8):999-1004.
|
[25] |
DE OLIVEIRA SILVA J, FILHO G R, DA SILVA MEIRELES C, et al. Thermal analysis and FTIR studies of sewage sludge produced in treatment plants. The case of sludge in the city of Uberlândia-MG, Brazil[J]. Thermochimica Acta, 2012, 528:72-75.
|
[26] |
YUAN J H, XU R K, ZHANG H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3):3488-3497.
|
[27] |
ZIELI?SKA A, OLESZCZUK P. The conversion of sewage sludge into biochar reduces polycyclic aromatic hydrocarbon content and ecotoxicity but increases trace metal content[J]. Biomass and Bioenergy, 2015, 75:235-244.
|
[28] |
VAN WESENBEECK S, PRINS W, RONSSE F, et al. Sewage sludge carbonization for biochar applications. Fate of heavy metals[J]. Energy & Fuels, 2014, 28(8):5318-5326.
|
[29] |
HELSEN L, VAN DEN BULCK E. Review of disposal technologies for chromated copper arsenate (CCA) treated wood waste, with detailed analyses of thermochemical conversion processes[J]. Environmental Pollution, 2005, 134(2):301-314.
|
[30] |
KIM J Y, KIM T S, EOM I Y, et al. Characterization of pyrolytic products obtained from fast pyrolysis of chromated copper arsenate (CCA)-and alkaline copper quaternary compounds (ACQ)-treated wood biomasses[J]. Journal of Hazardous Materials, 2012, 227/228:445-452.
|
[31] |
WONG J, LI K, FANG M, et al. Toxicity evaluation of sewage sludges in Hong Kong[J]. Environment International, 2001, 27(5):373-380.
|
[32] |
MIZUTANI S, WATANABE N, SAKAI S, et al. Influence of particle size preparation of MSW incineration residues on heavy metal leaching behavior in leaching tests[J]. Environmental Sciences:An International Journal of Environmental Physiology and Toxicology, 2005, 13(6):363-370.
|
[33] |
LU H L, ZHANG W H, WANG S Z, et al. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures[J]. Journal of Analytical and Applied Pyrolysis, 2013, 102:137-143.
|