CIESC Journal ›› 2017, Vol. 68 ›› Issue (10): 3747-3754.DOI: 10.11949/j.issn.0438-1157.20170434
Previous Articles Next Articles
GUO Feng, YU Jian, TRAN Tuyet-Suong, LI Changming, XU Guangwen
Received:
2017-04-19
Revised:
2017-07-07
Online:
2017-10-05
Published:
2017-10-05
Supported by:
supported by the National Natural Science Foundation of China(51574214).
郭凤, 余剑, Tran Tuyet-Suong, 李长明, 许光文
通讯作者:
余剑,yujian@ipe.ac.cn
基金资助:
国际合作项目(2016YFE0128300);中国科学院科技服务网络计划项目(KFJ-SW-STS-149);四川省科技计划项目(2016JZ0011);国家自然科学基金项目(51574214)。
CLC Number:
GUO Feng, YU Jian, TRAN Tuyet-Suong, LI Changming, XU Guangwen. In situ preparation of mesoporous V2O5-WO3/TiO2 catalyst by sol-gel method and its performance for NH3-SCR reaction[J]. CIESC Journal, 2017, 68(10): 3747-3754.
郭凤, 余剑, Tran Tuyet-Suong, 李长明, 许光文. 溶胶-凝胶原位合成钒钨钛催化剂及NH3-SCR性能[J]. 化工学报, 2017, 68(10): 3747-3754.
[1] | KANG Y S, KIM S S, HONG S C. Combined process for removal of SO2, NOx, and particulates to be applied to a 1.6-MWe pulverized coal boiler[J]. J. Ind. Eng. Chem., 2015, 30(1):197-203. |
[2] | 郝吉明, 马广大, 王书肖. 大气污染控制工程[M]. 3版. 北京:高等教育出版社, 2010:378-380. HAO J M, MA G D, WANG S X. Air Pollution Control Engineering[M]. 3rd ed. Beijing:Higher Education Press, 2010:378-380. |
[3] | 李穹, 吴玉新, 杨海瑞, 等. SNCR脱硝特性的模拟及优化[J]. 化工学报, 2013, 64(5):1789-1796. LI Q, WU Y X, YANG H R, et al. Simulation and optimization of SNCR process[J]. CIESC Journal, 2013, 64(5):1789-1796. |
[4] | DJERAD S, TIFOUTI L, CROCOLL M, et al. Effect of vanadia and tungsten loadings on the physical and chemical characteristics of V2O5-WO3/TiO2 catalysts[J]. Journal of Molecular Catalysis A:Chemical, 2004, 208(1/2):257-265. |
[5] | MOON H K, TAE HA. A commercial V2O5-WO3/TiO2 catalyst used at an NH3-SCR deNOx process in an oil-fired power plant:cause of an increase in deNOxing and NH3 oxidation performances at low temperatures[J]. Research on Chemical Intermediates, 2011, 37(6):1333-1344. |
[6] | 王龙飞, 张亚平, 郭婉秋, 等. WO3/TiO2-ZrO2脱硝催化剂制备及其NH3活化机理[J]. 化工学报, 2015, 66(10):3903-3910. WANG L F, ZHANG Y P, GUO W Q, et al. Preparation of WO3/TiO2-ZrO2 catalyst for selective catalytic reduction and mechanism of NH3 activation[J]. CIESC Journal, 2015, 66(10):3903-3910. |
[7] | TERESA V S, GREGORIO M, AJTONIO B F. Low-temperature SCR of NOx with NH3 over carbon-ceramic cellular monolith-supported manganese oxides[J]. Catalysis Today, 2001, 69(1/2/3/4):259-264. |
[8] | TORRE-ABREU C, HENRIQUES C, RIBEIRO F R, et al. Selective catalytic reduction of NO on copper-exchanged zeolites:the role of the structure of the zeolite in the nature of copper-active sites[J]. Catalysis Today, 1999, 54(4):407-418. |
[9] | SUNG H C, HUY H N, GOBINDA G, et al. Effect of microwave-assisted hydrothermal process parameters on formation of different TiO2 nanostructures[J]. Catalysis Today, 2016, 266(1):46-52. |
[10] | SUN M, ZHAO T, LI Z, et al. Sol-gel synthesis of macro-mesoporous Al2O3-SiO2-TiO2 monoliths via phase separation route[J]. Ceramics International, 2016, 42(14):15926-15932. |
[11] | ZHANG J, LI C, ZHAO L, et al. A sol-gel Ti-Al-Ce-nanoparticle catalyst for simultaneous removal of NO and HgO from simulated flue gas[J]. Chemical Engineering Journal, 2017, 313(1):1535-1547. |
[12] | YANG P, ZHAO D, DAVID I M, et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks[J]. Nature, 1998, 396(1):152-155. |
[13] | QU Y, WANG W, JING L, et al. Surface modification of nanocrystalline anatase with CTAB in the acidic condition and its effects on photocatalytic activity and preferential growth of TiO2[J]. Appl. Surf. Sci., 2010, 257(1):151-156. |
[14] | HYE S S, CHANGBUM J, SEUNG H K, et al. Mesoporous titania with anatase framework synthesized using polyphenolic structure-directing agent:synthesis domain and catalytic metal loading[J]. Microporous and Mesoporous Materials, 2015, 212(1):117-124. |
[15] | MARBERGER A, ELSENER, M, FERRI D, et al. VOx surface coverage optimization of V2O5/WO3-TiO2 SCR catalysts by variation of the V loading and by aging[J]. Catalysts, 2015, 5(4):1704-1720. |
[16] | SHAN W, SONG H. Catalysts for the selective catalytic reduction of NOx with NH3 at low temperature[J]. Catal. Sci. Technol., 2015, 5(9):4280-4288. |
[17] | 郭凤, 余剑, 初茉, 等. 溶胶-凝胶原位合成宽活性温度V2O5/TiO2脱硝催化剂[J]. 化工学报, 2014, 65(6):2098-2105. GUO F, YU J, CHU M, et al. Preparation of V2O5/TiO2 catalyst with in-situ sol-gel method for denitration in wide temperature window[J]. CIESC Journal, 2014, 65(6):2098-2105. |
[18] | DIEBOLD U. The surface science of titanium dioxide[J]. Surface Science Reports, 2003, 48(5/6/7/8):53-229. |
[19] | BONINGARI T, KOIRALA R, SMIRNIOTIS P G. Low-temperature catalytic reduction of NO by NH3 over vanadia-based nanoparticles prepared by flame-assisted spray pyrolysis:influence of various supports[J]. Applied Catalysis B-Environmental, 2013, 140/141(1):289-298. |
[20] | MENDIALDUA J, CASANOVA R, BARBAUX Y. XPS studies of V2O5, V6O13, VO2 and V2O3[J]. Journal of Electron Spectroscopy and Related Phenomena, 1995, 71(3):249-261. |
[21] | ZHANG S, ZHONG Q, ZHAO W, et al. Surface characterization studies on F-doped V2O5/TiO2 catalyst for NO reduction with NH3 at low-temperature[J]. Chemical Engineering Journal, 2014, 253(1):207-216. |
[22] | 刘建华, 杨晓博, 张琛, 等. Fe2O3对V2O5-WO3/TiO2催化剂表面性质及其性能的影响[J]. 化工学报, 2016, 67(4):1287-1293. LIU J H, YANG X B, ZHANG C, et al. Effect of Fe2O3 on surface properties and activities of V2O5-WO3/TiO2 catalysts[J]. CIESC Journal, 2016, 67(4):1287-1293. |
[23] | JIANG Y, XING Z, WANG X, et al. Activity and characterization of a Ce-W-Ti oxide catalyst prepared by a single step sol-gel method for selective catalytic reduction of NO with NH3[J]. Flue, 2015, 151(1):124-129. |
[24] | LIU F, HE H. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH3[J]. J. Phys. Chem. C, 2010, 114(40):16929-16936. |
[25] | JING L, XU Z, SUN X, et al. The surface properties and photocatalytic activities of ZnO ultrafine particles[J]. Applied Surface Science, 2001, 180(3/4):308-314. |
[26] | TRONCONI E, NOVA I, CIARDELLI C, et al. Redox features in the catalytic mechanism of the "standard" and "fast" NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods[J]. Journal of Catalysis, 2007, 245(1):1-10. |
[27] | LIU X, LU J, LU X, et al. NH3 selective catalytic reduction of NO:a large surface TiO2 support and its promotion of V2O5 dispersion on the prepared catalyst[J]. Chinese Journal of Catalysis, 2016, 37(1):878-887. |
[28] | ARFAUUI J, KHALFALLAH B L, GHORBEL A, et al. Effect of vanadium on the behaviour of unsulfated and sulfated Ti-pillared clay catalysts in the SCR of NO by NH3[J]. Catalyst Today, 2009, 142(3/4):234-238. |
[29] | LI L, SHEN Q, CHENG J, et al. Catalytic oxidation of NO over TiO2 supported platinum clusters(Ⅱ):Mechanism study by in situ FTIR spectra[J]. Catalysis Today, 2010, 158(3/4):361-369. |
[30] | ZHAO W, ZHONG Q, ZHANG T J, et al. Characterization study on the promoting effect of F-doping V2O5/TiO2 SCR catalysts[J]. RSC Advances, 2012, 2(20):7906-7914. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[3] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[4] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[5] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[6] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[7] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
[8] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[9] | Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369. |
[10] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
[11] | Yu CHEN, Xiaoyan ZHENG, Hui ZHAO, Erqiang WANG, Jie LI, Chunshan LI. Heterogeneous aldol condensation catalyzed with Pickering emulsion [J]. CIESC Journal, 2023, 74(1): 449-458. |
[12] | Zhuotao TAN, Siyu QI, Mengjiao XU, Jie DAI, Chenjie ZHU, Hanjie YING. Application of the redox cascade systems with coenzyme self-cycling in biocatalytic processes: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 45-59. |
[13] | Xun JIAO, Cheng TONG, Cunpu LI, Zidong WEI. Kinetic regulation strategies in lithium-sulfur batteries [J]. CIESC Journal, 2023, 74(1): 170-191. |
[14] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[15] | Yang HU, Yan SUN. Self-propulsion of enzyme and enzyme-induced micro-/nanomotor [J]. CIESC Journal, 2023, 74(1): 116-132. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 610
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 410
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||