CIESC Journal ›› 2018, Vol. 69 ›› Issue (5): 1819-1828.DOI: 10.11949/j.issn.0438-1157.20171405
Previous Articles Next Articles
LIN Jianghui, WANG Qiong, WANG Jie, WANG Hongtao, MA Guangyuan, XU Yanfei, DING Mingyue
Received:
2017-10-20
Revised:
2017-12-07
Online:
2018-05-05
Published:
2018-05-05
Supported by:
supported by the Guangdong Province Science and Technology Project(2015A010106011, 2016A050502037) and the Fundamental Research Funds for the Central Universities(2042017kf0173, 2042017kf0200).
林江辉, 王琼, 王捷, 王洪涛, 马光远, 徐艳飞, 定明月
通讯作者:
定明月
基金资助:
广东省科技计划项目(2015A010106011,2016A050502037);中央高校基本科研业务费专项资金(2042017kf0173,2042017kf0200)。
CLC Number:
LIN Jianghui, WANG Qiong, WANG Jie, WANG Hongtao, MA Guangyuan, XU Yanfei, DING Mingyue. Progress on mechanism and catalysts of biomass syngas methanation[J]. CIESC Journal, 2018, 69(5): 1819-1828.
林江辉, 王琼, 王捷, 王洪涛, 马光远, 徐艳飞, 定明月. 生物质合成气甲烷化机理及催化体系研究进展[J]. 化工学报, 2018, 69(5): 1819-1828.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20171405
[1] | 崔民选, 王军生, 陈义和. 中国能源发展报告(2015)[M]. 北京:社会科学文献出版社, 2015. CUI M X, WANG J S, CHEN Y H. Energy Development Report of China(2015)[M]. Beijing:Social Science Academic Press, 2015. |
[2] | 庞孟昌, 戚永颖. 着力构建多边合作共赢的东北亚天然气和管道合作机制——第十三届东北亚天然气和管道国际大会综述[J]. 国际石油经济, 2013, (9):34-46. PANG M C, QI Y Y. Work hard to build a multilateral cooperative mechanism for natural gas and pipelines for win-win cooperation-the thirteenth international conference on natural gas and pipelines in northeast Asia[J]. International Petroleum Economics, 2013, (9):34-46. |
[3] | 武宏香, 赵增立, 王小波, 等. 生物质气化制备合成天然气技术的研究进展[J]. 化工进展, 2013, 32(1):83-90. WU H X, ZHAO Z L, WANG X B, et al. Technical development on synthetic natural gas production from biomass[J]. Chemical Industry and Engineering Progress, 2013, 32(1):83-90. |
[4] | ARAKI M, PONEC V. Methanation of carbon monoxide on nickel and nickel-copper alloys[J]. Journal of Catalysis, 1976, 44(3):439-448. |
[5] | GUPTA N M, KAMBLE V S, RAO K A, et al. Mechanism of CO and CO2 methanation over Ru-molecular-sieve catalyst[J]. Journal of Catalysis, 1979, 60(1):57-67. |
[6] | FUJITA S, NAKAMURA M, DOI T, et al. Mechanisms of methanation of carbon-dioxide and carbon-monoxide over nickel alumina catalysts[J]. Applied Catalysis A-General, 1993, 104(1):87-100. |
[7] | SEHESTED J, DAHL S, JACOBSEN J, et al. Methanation of CO over nickel:mechanism and kinetics at high H2/CO ratios[J]. The Journal of Physical Chemistry B, 2005, 109(6):2432-2438. |
[8] | ENGBÆK J, LYTKEN O, NIELSEN J H, et al. CO dissociation on Ni:the effect of steps and of nickel carbonyl[J]. Surface Science, 2008, 602(3):733-743. |
[9] | POLIZZOTTI R S, SCHWARZ J A. Hydrogenation of CO to methane:kinetic studies on polycrystalline nickel foils[J]. Journal of Catalysis, 1982, 77(1):1-15. |
[10] | ECKLE S, ANFANG H, BEHM R J. Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H2-rich reformate gases[J]. The Journal of Physical Chemistry C, 2011, 115(4):1361-1367. |
[11] | PANAGIOTOPOULOU P, KONDARIDES D I, VERYKIOS X E. Mechanistic study of the selective methanation of CO over Ru/TiO2 catalyst:identification of active surface species and reaction pathways[J]. The Journal of Physical Chemistry C, 2011, 115(4):1220-1230. |
[12] | HAN X, YANG J, GUO H, et al. Mechanism studies concerning carbon deposition effect of CO methanation on Ni-based catalyst through DFT and TPSR methods[J]. International Journal of Hydrogen Energy, 2016, 41(20):8401-8411. |
[13] | WANG Y, SU Y, ZHU M, et al. Mechanism of CO methanation on the Ni4/γ-Al2O3 and Ni3Fe/γ-Al2O3 catalysts:a density functional theory study[J]. International Journal of Hydrogen Energy, 2015, 40(29):8864-8876. |
[14] | WEATHERBEE G D, BARTHOLOMEW C H. Hydrogenation of CO2 on group-Ⅷmetals(Ⅱ):Kinetics and mechanism of CO2 hydrogenation on nickel[J]. Journal of Catalysis, 1982, 77(2):460-472. |
[15] | PEEBLES D E, GOODMAN D W, WHITE J M. Methanation of carbon-dioxide on Ni(100) and the effects of surface modifiers[J]. The Journal of Physical Chemistry, 1983, 87(22):4378-4387. |
[16] | PRAIRIE M R, RENKEN A, HIGHFIELD J G. A Fourier-transform infrared spectroscopic study of CO2 methanation on supported ruthernium[J]. Journal of Catalysis, 1991, 129(1):130-144. |
[17] | KIM H Y, LEE H M, PARK J. Bifunctional mechanism of CO2 methanation on Pd-MgO/SiO2 catalyst:independent roles of MgO and Pd on CO2 methanation[J]. The Journal of Physical Chemistry C, 2010, 114(15):7128-7131. |
[18] | PAN Q, PENG J, SUN T, et al. Insight into the reaction route of CO2 methanation:promotion effect of medium basic sites[J]. Catalysis Communications, 2014, 45:74-78. |
[19] | GAO J, JIA C, ZHANG M, et al. Effect of nickel nanoparticle size in Ni/alpha-Al2O3 on CO methanation reaction for the production of synthetic natural gas[J]. Catalysis Science & Technology, 2013, 3(8):2009-2015. |
[20] | MA S, TAN Y, HAN Y. Methanation of syngas over coral reef-like Ni/Al2O3 catalysts[J]. Journal of Natural Gas Chemistry, 2011, 20(4):435-440. |
[21] | ZHANG Y, ZHANG G, WANG L, et al. Selective methanation of carbon monoxide over Ru-based catalysts in H2-rich gases[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(5):1590-1597. |
[22] | MENG F, ZHONG P, LI Z, et al. Surface structure and catalytic performance of Ni-Fe catalyst for low-temperature CO hydrogenation[J]. Journal of Chemistry, 2014, 2014:534842. |
[23] | CHEN X, JIN J, SHA G, et al. Silicon-nickel intermetallic compounds supported on silica as a highly efficient catalyst for CO methanation[J]. Catalysis Science & Technology, 2014, 4(1):53-61. |
[24] | LI P, ZHU M, DAN J, et al. Two-dimensional porous SiO2 nanomesh supported high dispersed Ni nanoparticles for CO methanation[J]. Chemical Engineering Journal, 2017, 326:774-780. |
[25] | TAKENAKA S, SHIMIZU T, OTSUKA K. Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts[J]. International Journal of Hydrogen Energy, 2004, 29(10):1065-1073. |
[26] | HWANG S, LEE J, HONG U G, et al. Hydrogenation of carbon monoxide to methane over mesoporous nickel-M-alumina(M=Fe, Ni, Co, Ce, and La) xerogel catalysts[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(1):243-248. |
[27] | SENANAYAKE S D, EVANS J, AGNOLI S, et al. Water-gas shift and CO methanation reactions over Ni-CeO2(111) catalysts[J]. Topics in Catalysis, 2011, 54(1-4):34-41. |
[28] | STRUIS R P W J, SCHILDHAUER T J, CZEKAJ I, et al. Sulphur poisoning of Ni catalysts in the SNG production from biomass:a TPO/XPS/XAS study[J]. Applied Catalysis A-General, 2009, 362(1/2):121-128. |
[29] | GALLETTI C, SPECCHIA S, SARACCO G, et al. CO-selective methanation over Ru-γ-Al2O3 catalysts in H2-rich gas for PEM FC applications[J]. Chemical Engineering Science, 2010, 65(1):590-596. |
[30] | ABDEL-MAGEED A M, ECKLE S, ANFANG H G, et al. Selective CO methanation in CO2-rich H2 atmospheres over a Ru/zeolite catalyst:the influence of catalyst calcination[J]. Journal of Catalysis, 2013, 298:148-160. |
[31] | 董新法, 莫欣满, 林维明. 一种富氢气体中CO选择性甲烷化催化剂的制备方法:200710032526.8[P]. 2008-5-28. DONG X F, MO X M, LIN W M. Preparation of CO-selective methanation catalyst in a hydrogen rich gas:200710032526.8[P]. 2008-5-28. |
[32] | GOGATE M R, DAVIS R J. Comparative study of CO and CO2 hydrogenation over supported Rh-Fe catalysts[J]. Catalysis Communications, 2010, 11(10):901-906. |
[33] | FRØSETH V, STORSÆTER S, BORG Ø, et al. Steady state isotopic transient kinetic analysis(SSITKA) of CO hydrogenation on different Co catalysts[J]. Applied Catalysis A-General, 2005, 289(1):10-15. |
[34] | HERRANZ T, DENG X, CABOT A, et al. Influence of the cobalt particle size in the CO hydrogenation reaction studied by in situ X-ray absorption spectroscopy[J]. Journal of Physical Chemistry B, 2009, 113(31):10721-10727. |
[35] | 张李锋, 石悠, 赵斌元, 等. γ-Al2O3载体研究进展[J]. 材料导报, 2007, 21(2):67-71. ZHANG L F, SHI Y, ZHAO B Y, et al. Progress in research on γ-alumina catalyst carrier[J]. Material Review, 2007, 21(2):67-71. |
[36] | GAO Z, CUI L, MA H. Selective methanation of CO over Ni/Al2O3 catalyst:effects of preparation method and Ru addition[J]. International Journal of Hydrogen Energy, 2016, 41(12):5484-5493. |
[37] | 徐振刚, 罗伟, 王乃继, 等. 费托合成催化剂载体的研究进展[J]. 煤炭转化, 2008, 31(3):92-95. XU Z G, LUO W, WANG N J, et al. Research progress of carrier for Fischer-Tropsch synthesis catalyst[J]. Coal Conversion, 2008, 31(3):92-95. |
[38] | ZHAO B, CHEN Z, YAN X, et al. CO methanation over Ni/SiO2 catalyst prepared by ammonia impregnation and plasma decomposition[J]. Topics in Catalysis, 2017, 60(12/13/14):879-889. |
[39] | CHEN A, MIYAO T, HIGASHIYAMA K, et al. High catalytic performance of mesoporous zirconia supported nickel catalysts for selective CO methanation[J]. Catalysis Science & Technology, 2014, 4(8):2508-2511. |
[40] | SHIMODA N, SHOJI D, TANI K, et al. Role of trace chlorine in Ni/TiO2 catalyst for CO selective methanation in reformate gas[J]. Applied Catalysis B:Environmental, 2015, 174/175:486-495. |
[41] | ZYRYANOVA M M, SNYTNIKOV P V, GULYAEV R V, et al. Performance of Ni/CeO2 catalysts for selective CO methanation in hydrogen-rich gas[J]. Chemical Engineering Journal, 2014, 238(SI):189-197. |
[42] | MENG F, LI X, LI M, et al. Catalytic performance of CO methanation over La-promoted Ni/Al2O3 catalyst in a slurry-bed reactor[J]. Chemical Engineering Journal, 2017, 313:1548-1555. |
[43] | CHENG C, SHEN D, XIAO R, et al. Methanation of syngas(H2/CO) over the different Ni-based catalysts[J]. Fuel, 2017, 189:419-427. |
[44] | 周龙, 马丽萍, 陈建涛, 等. Ni/γ-Al2O3对二氧化碳加氢甲烷化的催化活性研究[J]. 化学世界, 2015, (1):16-21. ZHOU L, MA L P, CHEN J T, et al. Study on catalytic activity of Ni/γ-Al2O3 for CO2 methanation by hydrogenation[J]. Chemical World, 2015, (1):16-21. |
[45] | AZIZ M A A, JALIL A A, TRIWAHYONO S, et al. Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation[J]. Applied Catalysis B-Environmental, 2014, 147:359-368. |
[46] | 刘泉. 水凝胶法制备Ni/ZrO2催化剂及其CO2加氢甲烷化性能研究[D]. 太原:太原理工大学, 2013. LIU Q. Ni/ZrO2 catalyst prepared by hydrogel method and its catalytic performance for methanation of carbon dioxide[D]. Taiyuan:Taiyuan University of Technology, 2013. |
[47] | LIU J, LI C, WANG F, et al. Enhanced low-temperature activity of CO2 methanation over highly-dispersed Ni/TiO2 catalyst[J]. Catalysis Science & Technology, 2013, 3(10):2627-2633. |
[48] | ZHOU G, LIU H, CUI K, et al. Methanation of carbon dioxide over Ni/CeO2 catalysts:effects of support CeO2 structure[J]. International Journal of Hydrogen Energy, 2017, 42(25):16108-16117. |
[49] | RAHMANI S, REZAEI M, MESHKANI F. Preparation of promoted nickel catalysts supported on mesoporous nanocrystalline gamma alumina for carbon dioxide methanation reaction[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(6):4176-4182. |
[50] | GARBARINO G, BELLOTTI D, RIANI P, et al. Methanation of carbon dioxide on Ru/Al2O3 and Ni/Al2O3 catalysts at atmospheric pressure:catalysts activation, behaviour and stability[J]. International Journal of Hydrogen Energy, 2015, 40(30):9171-9182. |
[51] | PARK J, MCFARLAND E W. A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2[J]. Journal of Catalysis, 2009, 266(1):92-97. |
[52] | ABE T, TANIZAWA M, WATANABE K, et al. CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method[J]. Energy & Environmental Science, 2009, 2(3):315-321. |
[53] | ZHEN W, LI B, LU G, et al. Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5via control of active species dispersion[J]. Chemical Communications, 2015, 51(9):1728-1731. |
[54] | ROENSCH S, SCHNEIDER J, MATTHISCHKE S, et al. Review on methanation-from fundamentals to current projects[J]. Fuel, 2016, 166:276-296. |
[55] | GARBARINO G, RIANI P, MAGISTRI L, et al. A study of the methanation of carbon dioxide on Ni/Al2O3 catalysts at atmospheric pressure[J]. International Journal of Hydrogen Energy, 2014, 39(22):11557-11565. |
[56] | JANKE C, DUYAR M S, HOSKINS M, et al. Catalytic and adsorption studies for the hydrogenation of CO2 to methane[J]. Applied Catalysis B-Environmental, 2014, 152/153:184-191. |
[57] | LI D, ICHIKUNI N, SHIMAZU S, et al. Catalytic properties of sprayed Ru/Al2O3 and promoter effects of alkali metals in CO2 hydrogenation[J]. Applied Catalysis A-General, 1998, 172(2):351-358. |
[58] | PANAGIOTOPOULOU P. Hydrogenation of CO2 over supported noble metal catalysts[J]. Applied Catalysis A-General, 2017, 542:63-70. |
[59] | BEULS A, SWALUS C, JACQUEMIN M, et al. Methanation of CO2:further insight into the mechanism over Rh/γ-Al2O3 catalyst[J]. Applied Catalysis B-Environmental, 2012, 113/114:2-10. |
[60] | KARELOVIC A, RUIZ P. CO2 hydrogenation at low temperature over Rh/γ-Al2O3 catalysts:effect of the metal particle size on catalytic performances and reaction mechanism[J]. Applied Catalysis B-Environmental, 2012, 113/114:237-249. |
[61] | MUROYAMA H, TSUDA Y, ASAKOSHI T, et al. Carbon dioxide methanation over Ni catalysts supported on various metal oxides[J]. Journal of Catalysis, 2016, 343(SI):178-184. |
[62] | RIANI P, GARBARINO G, LUCCHINI M A, et al. Unsupported versus alumina-supported Ni nanoparticles as catalysts for steam/ethanol conversion and CO2 methanation[J]. Journal of Molecular Catalysis A-Chemical, 2014, 383:10-16. |
[63] | XU L, WANG F, CHEN M, et al. Alkaline-promoted Ni based ordered mesoporous catalysts with enhanced low-temperature catalytic activity toward CO2 methanation[J]. RSC Advances, 2017, 7(30):18199-18210. |
[64] | UBUKATA M, MITSUHASHI S, UEKI A, et al. Quality determination of nickel-loaded silica prepared from poaceous biomass[J]. Journal of Agricultural and Food Chemistry, 2010, 58(10):6312-6317. |
[65] | AZIZ M A A, JALIL A A, TRIWAHYONO S, et al. Methanation of carbon dioxide on metal-promoted mesostructured silica nanoparticles[J]. Applied Catalysis A-General, 2014, 486:115-122. |
[66] | AZIZ M A A, JALIL A A, TRIWAHYONO S, et al. CO2 methanation over Ni-promoted mesostructured silica nanoparticles:influence of Ni loading and water vapor on activity and response surface methodology studies[J]. Chemical Engineering Journal, 2015, 260:757-764. |
[67] | KÖCK E, KOGLER M, BIELZ T, et al. In situ FT-IR spectroscopic study of CO2 and CO adsorption on Y2O3, ZrO2, and yttria-stabilized ZrO2[J]. The Journal of Physical Chemistry C, 2013, 117(34):17666-17673. |
[68] | ZHAO K, WANG W, LI Z. Highly efficient Ni/ZrO2 catalysts prepared via combustion method for CO2 methanation[J]. Journal of CO2 Utilization, 2016, 16:236-244. |
[69] | 周龙. Ni基催化剂二氧化碳加氢催化甲烷化研究[D]. 昆明:昆明理工大学, 2014. ZHOU L. Study on Ni catalytic hydrogenation of carbon dioxide for methane[D]. Kunming:Kunming University of Science and Technology, 2014. |
[70] | 罗来涛, 李松军, 邓庚凤, 等. 助剂对Ni/海泡石催化剂加氢性能的影响[J]. 分子催化, 2000, 14(1):46-50. LUO L T, LI S J, DENG G F, et al. Effect of promoters on the hydrogenation properties of Ni/sepiolite catalysts[J]. Journal of Molecular Catalysis, 2000, 14(1):46-50. |
[71] | ABATE S, BARBERA K, GIGLIO E, et al. Synthesis, characterization, and activity pattern of Ni-Al hydrotalcite catalysts in CO2 methanation[J]. Industrial & Engineering Chemistry Research, 2016, 55(30):8299-8308. |
[72] | MUTZ B, CARVALHO H W P, MANGOLD S, et al. Methanation of CO2:structural response of a Ni-based catalyst under fluctuating reaction conditions unraveled by operando spectroscopy[J]. Journal of Catalysis, 2015, 327:48-53. |
[73] | 高晓庆. Ni-Mn/γ-Al2O3催化剂的制备、表征及其CO2甲烷化研究[D]. 太原:山西大学, 2011. GAO X Q. Preparation, characterization and catalytic activity of Ni-Mn/γ-Al2O3 catalyst for CO2 methanation[D]. Taiyuan:Shanxi University, 2011. |
[74] | PANDEY D, DEO G. Effect of support on the catalytic activity of supported Ni-Fe catalysts for the CO2 methanation reaction[J]. Journal of Industrial and Engineering Chemistry, 2016, 33:99-107. |
[75] | CAI M, WEN J, CHU W, et al. Methanation of carbon dioxide on Ni/ZrO2-Al2O3 catalysts:effects of ZrO2 promoter and preparation method of novel ZrO2-Al2O3 carrier[J]. Journal of Natural Gas Chemistry, 2011, 20(3):318-324. |
[76] | ZHOU L, WANG Q, MA L, et al. CeO2 promoted mesoporous Ni/g-Al2O3 catalyst and its reaction conditions for CO2 methanation[J]. Catalysis Letters, 2015, 145(2):612-619. |
[77] | TADA S, OCHIENG O J, KIKUCHI R, et al. Promotion of CO2 methanation activity and CH4 selectivity at low temperatures over Ru/CeO2/Al2O3 catalysts[J]. International Journal of Hydrogen Energy, 2014, 39(19):10090-10100. |
[78] | CHOUDHURY M B I, AHMED S, SHALABI M A, et al. Preferential methanation of CO in a syngas involving CO2 at lower temperature range[J]. Applied Catalysis a:General, 2006, 314(1):47-53. |
[79] | ECKLE S, ANFANG H, BEHM R J. What drives the selectivity for CO methanation in the methanation of CO2-rich reformate gases on supported Ru catalysts?[J]. Applied Catalysis A-General, 2011, 391(1/2SI):325-333. |
[80] | 熊伟, 定明月, 涂军令, 等. 不同载体Ni基催化剂生物质热解气甲烷化反应性能[J]. 燃料化学学报, 2014, 42(8):958-964. XIONG W, DING M Y, TU J L, et al. Methanation of biomass pyrolysis gas over Ni catalyst with different supports[J]. Journal of Fuel Chemistry and Technology, 2014, 42(8):958-964. |
[81] | 刘婕, 张盼盼, 詹天, 等. Ni-CeO2/Al2O3催化剂的制备、表征及其生物质合成气甲烷化性能研究[J]. 化学与生物工程, 2016, 33(8):19-26. LIU J, ZHANG P P, ZHAN T, et al. Preparation and characterization of Ni-CeO2/Al2O3 and its catalytic performance for methanation of biomass syngas[J]. Chemical and Biological Engineering, 2016, 33(8):19-26. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[4] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[5] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[6] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[7] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[8] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[9] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[10] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[11] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[12] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[13] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[14] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[15] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||