CIESC Journal ›› 2019, Vol. 70 ›› Issue (12): 4864-4871.DOI: 10.11949/0438-1157.20190826
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Zhiyuan CHEN(),Dong YAN(),Fan QIAN,Wencui LI()
Received:
2019-07-18
Revised:
2019-09-18
Online:
2019-12-05
Published:
2019-12-05
Contact:
Wencui LI
通讯作者:
李文翠
作者简介:
陈志远(1994—),男,硕士研究生,基金资助:
CLC Number:
Zhiyuan CHEN, Dong YAN, Fan QIAN, Wencui LI. Preparation and pseudocapacitance properties of highly conductive sandwich-shaped MnO2/CNTs/MnO2 mesoporous materials[J]. CIESC Journal, 2019, 70(12): 4864-4871.
陈志远, 颜冬, 钱凡, 李文翠. 高导电三明治状MnO2/CNTs/MnO2介孔材料的制备及其赝电容性能[J]. 化工学报, 2019, 70(12): 4864-4871.
Add to citation manager EndNote|Ris|BibTeX
Fig.4 CV curves of Sandwich/CP at different scan rates (a), galvanostatic charge-discharge curves of Sandwich/CP at different current densities (b), specific capacitance of Sandwich/CP and MnO2/CP at different current densities (c), CV curves of Sandwich/CP and MnO2/CP at 5 mV·s-1 (d), galvanostatic charge-discharge curves of Sandwich/CP and MnO2/CP at 0.1 A·g-1 (e), Nyquist plot of Sandwich/CP and MnO2/CP (f)
电流密度/(A·g-1) | 质量比电容/(F·g-1) | |
---|---|---|
Sandwich/CP | MnO2/CP | |
0.1 | 428.8 | 212.7 |
0.2 | 390.3 | 200.2 |
0.5 | 364.2 | 188.3 |
1.0 | 362.3 | 175.9 |
2.0 | 354.3 | 160.8 |
5.0 | 344.8 | 134.0 |
Table 1 Specific capacitance of Sandwich/CP and MnO2/CP at different current densities
电流密度/(A·g-1) | 质量比电容/(F·g-1) | |
---|---|---|
Sandwich/CP | MnO2/CP | |
0.1 | 428.8 | 212.7 |
0.2 | 390.3 | 200.2 |
0.5 | 364.2 | 188.3 |
1.0 | 362.3 | 175.9 |
2.0 | 354.3 | 160.8 |
5.0 | 344.8 | 134.0 |
1 | 叶向果, 张校刚, 米红宇, 等 . 不同形貌Co3O4的水热-微乳液法制备及其电化学性能[J]. 物理化学学报, 2008, 24(6): 1105-1110. |
Ye X G , Zhang X G , Mi H Y , et al . Hydrothermal microemulsion synthesis of Co3O4 with different morphologies and their electrochemical capacitance[J]. Acta Physico-Chimica Sinica, 2008, 24(6): 1105-1110. | |
2 | 邢宝林, 黄光许, 谌伦建, 等 . 超级电容器电极材料的研究现状与展望[J]. 材料导报, 2012, 26(19): 21-25. |
Xing B L , Huang G X , Chen L J , et al . Current situation and prospect of research on electrode materials for supercapacitor[J]. Materials Review, 2012, 26(19): 21-25. | |
3 | Guo Y G , Hu J S , Wan L J . Nanostructured materials for electrochemical energy conversion and storage devices[J]. Advanced Materials, 2008, 20(15): 2878-2887. |
4 | Liu C , Yu Z , Neff D , et al . Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Letters, 2010, 10(12): 4863-4868. |
5 | Wang K , Wu H , Meng Y , et al . Conducting polymer nanowire arrays for high performance supercapacitors[J]. Small, 2014, 10(1): 14-31. |
6 | Yang P , Ding Y , Lin Z , et al . Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes[J]. Nano Letters, 2014, 14(2): 731-736. |
7 | Chen W C , Hu C C , Wang C C , et al . Electrochemical characterization of activated carbon–ruthenium oxide nanoparticles composites for supercapacitors[J]. Journal of Power Sources, 2004, 125(2): 292-298. |
8 | Prasad K R , Miura N . Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors[J]. Electrochemistry Communications, 2004, 6(10): 1004-1008. |
9 | Li S H , Liu Q H , Qi L , et al . Progress in research on manganese dioxide electrode materials for electrochemical capacitors[J]. Chinese Journal of Analytical Chemistry, 2012, 40(3): 339-346. |
10 | Yun Y S , Kim J M , Park H H , et al . Free-standing heterogeneous hybrid papers based on mesoporous γ-MnO2 particles and carbon nanotubes for lithium-ion battery anodes[J]. Journal of Power Sources, 2013, 244: 747-751. |
11 | Ju J , Zhao H , Kang W , et al . Designing MnO2 & carbon composite porous nanofiber structure for supercapacitor applications[J]. Electrochimica Acta, 2017, 258: 116-123. |
12 | Ren Y , Xu Q , Zhang J , et al . Functionalization of biomass carbonaceous aerogels: selective preparation of MnO2@CA composites for supercapacitors[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9689-9697. |
13 | Yuan A , Zhang Q . A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte[J]. Electrochemistry Communications, 2006, 8(7): 1173-1178. |
14 | Hu L , Chen W , Xie X , et al . Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading[J]. ACS Nano, 2011, 5(11): 8904-8913. |
15 | Xu P , Wei B , Cao Z , et al . Stretchable wire-shaped asymmetric supercapacitors based on pristine and MnO2 coated carbon nanotube fibers[J]. ACS Nano, 2015, 9(6): 6088-6096. |
16 | Li L , Hu Z A , An N , et al . Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability[J]. The Journal of Physical Chemistry C, 2014, 118(40): 22865-22872. |
17 | Li P , Yang Y , Shi E , et al . Core-double-shell, carbon nanotube@polypyrrole@MnO2 sponge as freestanding, compressible supercapacitor electrode[J]. ACS Applied Materials & Interfaces, 2014, 6(7): 5228-5234. |
18 | Yan J , Fan Z , Wei T , et al . Fast and reversible surface redox reaction of grapheme-MnO2 composites as supercapacitor electrodes[J]. Carbon, 2010, 48(13): 3825-3833. |
19 | Yu G , Hu L , Vosgueritchian M , et al . Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors[J]. Nano Letters, 2011, 11(7): 2905-2911. |
20 | Wang G , Tang Q , Bao H , et al . Synthesis of hierarchical sulfonated graphene/MnO2/polyaniline ternary composite and its improved electrochemical performance[J]. Journal of Power Sources, 2013, 241: 231-238. |
21 | He Y , Chen W , Li X , et al . Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes[J]. ACS Nano, 2012, 7(1): 174-182. |
22 | Ma J , Cheng Q , Pavlínek V , et al . Morphology-controllable synthesis of MnO2 hollow nanospheres and their supercapacitive performance[J]. New Journal of Chemistry, 2013, 37(3): 722-728. |
23 | Giovambattista N , Debenedetti P G , Rossky P J . Effect of surface polarity on water contact angle and interfacial hydration structure[J]. The Journal of Physical Chemistry B, 2007, 111(32): 9581-9587. |
24 | Wu Z S , Wang D W , Ren W , et al . Anchoring hydrous RuO2 on graphene sheets for high‐performance electrochemical capacitors[J]. Advanced Functional Materials, 2010, 20(20): 3595-3602. |
25 | Walcarius A . Mesoporous materials and electrochemistry[J]. Chemical Society Reviews, 2013, 42(9): 4098-4140. |
26 | Wan C , Shen H , Ye X , et al . Facial synthesis of 3D MnO2 nanofibers sponge and its application in supercapacitors[J]. International Journal of Electrochemical Science, 2018, 13(12): 12320-12330. |
27 | Li H , Wang W , Pan F , et al . Synthesis of single-crystalline α-MnO2 nanotubes and structural characterization by HRTEM[J]. Materials Science and Engineering: B, 2011, 176(14): 1054-1057. |
28 | Zhang L , Li T , Ji X , et al . Freestanding three-dimensional reduced graphene oxide/MnO2 on porous carbon/nickel foam as a designed hierarchical multihole supercapacitor electrode[J]. Electrochimica Acta, 2017, 252: 306-314. |
29 | Lee H Y , Goodenough J B . Supercapacitor behavior with KCl electrolyte[J]. Journal of Solid State Chemistry, 1999, 144(1): 220-223. |
30 | Zhao L , Fan L Z , Zhou M Q , et al . Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors[J]. Advanced Materials, 2010, 22(45): 5202-5206. |
31 | Hsieh C T , Chen W Y , Cheng Y S . Influence of oxidation level on capacitance of electrochemical capacitors fabricated with carbon nanotube/carbon paper composites[J]. Electrochimica Acta, 2010, 55(19): 5294-5300. |
32 | Feng X , Yan Z , Chen N , et al . The synthesis of shape-controlled MnO2/graphene composites via a facile one-step hydrothermal method and their application in supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1(41): 12818-12825. |
[1] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[2] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[3] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[4] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[5] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[6] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[7] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[8] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[9] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[10] | Xiangning HU, Yuanbo YIN, Chen YUAN, Yun SHI, Cuiwei LIU, Qihui HU, Wen YANG, Yuxing LI. Experimental study on visualization of refined oil migration in soil [J]. CIESC Journal, 2023, 74(4): 1827-1835. |
[11] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[12] | Ruiqi LIU, Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA. The construction and application of biosensor based on gold nanoparticles loaded SiO2-nanoflowers [J]. CIESC Journal, 2023, 74(3): 1247-1259. |
[13] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
[14] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[15] | Peixu ZHOU, Yalun LI, Gongran YE, Yuan ZHUANG, Xilei WU, Zhikai GUO, Xiaohong HAN. Influence of physical properties of working fluids on leakage and diffusion characteristics of refrigerant in limited space [J]. CIESC Journal, 2023, 74(2): 953-967. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||