CIESC Journal ›› 2020, Vol. 71 ›› Issue (S2): 12-23.DOI: 10.11949/0438-1157.20201077
• Reviews and monographs • Previous Articles Next Articles
Qingsi LI1,2,3(),Lei ZHANG1,2,3()
Received:
2020-07-31
Revised:
2020-08-18
Online:
2020-11-06
Published:
2020-11-06
Contact:
Lei ZHANG
通讯作者:
张雷
作者简介:
李庆斯(1992—),男,博士研究生,基金资助:
CLC Number:
Qingsi LI, Lei ZHANG. Progress of hemoadsorbent materials for hemoperfusion[J]. CIESC Journal, 2020, 71(S2): 12-23.
李庆斯, 张雷. 血液灌流吸附剂材料的研究进展[J]. 化工学报, 2020, 71(S2): 12-23.
Add to citation manager EndNote|Ris|BibTeX
1 | Kjaergard L L, Liu J P, Als-Nielsen B, et al. Artificial and bioartificial support systems for acute and acute-on-chronic liver failure: a systematic review [J]. JAMA, 2003, 289(2): 217-222. |
2 | Siemsen A W, Dunea G, Mamdani B H, et al. Charcoal hemoperfusion for chronic renal failure [J]. Nephron, 1978, 22(4/5/6): 386-390. |
3 | Cruz D N, Antonelli M, Fumagalli R, et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: the euphas randomized controlled trial [J]. JAMA, 2009, 301(23): 2445-2452. |
4 | Howell C A, Sandeman S R, Zheng Y S, et al. New dextran coated activated carbons for medical use [J]. Carbon, 2016, 97: 134-146. |
5 | Yatzidis H. A convenient hemoperfusion microapparatus over charcoal for the treatment of endogenous and exogenous intoxification: its use as an effective artificial kidney [J]. Proceedings of the European Dialysis and Transplant Association, 1964, 1: 83-87. |
6 | Das J, Schwarte A A, Folkman J. Clearance of endotoxin by platelets: role in increasing the accuracy of the Limulus gelation test and in combating experimental endotoxemia [J]. Surgery, 1973, 74(2): 235-240. |
7 | Cheah W K, Ishikawa K, Othman R, et al. Nanoporous biomaterials for uremic toxin adsorption in artificial kidney systems: a review [J]. Journal of Biomedical Materials Research B: Applied Biomaterials, 2017, 105(5): 1232-1240. |
8 | Hughes R, Williams R. Clinical experience with charcoal and resin hemoperfusion [J]. Seminars in Liver Disease, 1986, 6(2): 164-173. |
9 | Cai N N, Li Q S, Zhang J M, et al. Antifouling zwitterionic hydrogel coating improves hemocompatibility of activated carbon hemoadsorbent [J]. Journal of Colloid and Interface Science, 2017, 503: 168-177. |
10 | Jiang S Y, Cao Z Q. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications [J]. Advanced Materials, 2010, 22(9): 920-932. |
11 | Zhang L, Cao Z Q, Bai T, et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction [J]. Nature Biotechnology, 2013, 31(6): 553-556. |
12 | Shao Q, Jiang S Y. Molecular understanding and design of zwitterionic materials [J]. Advanced Materials, 2015, 27(1): 15-26. |
13 | Liu R L, Ji W J, He T, et al. Fabrication of nitrogen-doped hierarchically porous carbons through a hybrid dual-template route for CO2 capture and haemoperfusion [J]. Carbon, 2014, 76: 84-95. |
14 | Yi R, Song Y, Wu C L, et al. Preparation of nitrogen-doped mesoporous carbon for the efficient removal of bilirubin in hemoperfusion [J]. ACS Applied Bio Materials, 2020, 3(2): 1036-1043. |
15 | Chen M Q, Pan M, Chong Y P, et al. Engineering the outermost surface of mesoporous carbon beads towards the broad-spectrum blood-cleansing application [J]. Carbon, 2018, 130: 782-791. |
16 | Tao G J, Zhang L X, Hua Z L, et al. Highly efficient adsorbents based on hierarchically macro/mesoporous carbon monoliths with strong hydrophobicity [J]. Carbon, 2014, 66: 547-559. |
17 | Ma C F, Gao Q, Zhou J, et al. Facile one-pot synthesis of magnetic nitrogen-doped porous carbon for high-performance bilirubin removal from BSA-rich solution [J]. RSC Advances, 2017, 7(4): 2081-2091. |
18 | Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 56-58. |
19 | Iijima S, Yudasaka M, Yamada R, et al. Nano-aggregates of single-walled graphitic carbon nano-horns [J]. Chemical Physics Letters, 1999, 309(3): 165-170. |
20 | Ando K, Shinke K, Yamada S, et al. Fabrication of carbon nanotube sheets and their bilirubin adsorption capacity [J]. Colloids and Surfaces, B: Biointerfaces, 2009, 71(2): 255-259. |
21 | Shinke K, Ando K, Koyama T, et al. Properties of various carbon nanomaterial surfaces in bilirubin adsorption [J]. Colloids and Surfaces B: Biointerfaces, 2010, 77(1): 18-21. |
22 | Yamazaki K, Shinke K, Ogino T. Selective adsorption of bilirubin against albumin to oxidized single-wall carbon nanohorns [J]. Colloids and Surfaces B: Biointerfaces, 2013, 112: 103-107. |
23 | Peng Z H, Yang Y, Luo J Y, et al. Nanofibrous polymeric beads from aramid fibers for efficient bilirubin removal [J]. Biomaterials Science, 2016, 4(9): 1392-1401. |
24 | Wu S Q, Duan B, Zeng X P, et al. Construction of blood compatible lysine-immobilized chitin/carbon nanotube microspheres and potential applications for blood purified therapy [J]. Journal of Materials Chemistry B, 2017, 5(16): 2952-2963. |
25 | Bai J F, Huang Y L, Gong Q M, et al. Preparation of porous carbon nanotube/carbon composite spheres and their adsorption properties [J]. Carbon, 2018, 137: 493-501. |
26 | Lanone S, Andujar P, Kermanizadeh A, et al. Determinants of carbon nanotube toxicity [J]. Advanced Drug Delivery Reviews, 2013, 65(15): 2063-2069. |
27 | Salvador-Morales C, Flahaut E, Sim E, et al. Complement activation and protein adsorption by carbon nanotubes [J]. Molecular Immunology, 2006, 43(3): 193-201. |
28 | He B, Shi Y J, Liang Y Q, et al. Single-walled carbon-nanohorns improve biocompatibility over nanotubes by triggering less protein-initiated pyroptosis and apoptosis in macrophages [J]. Nature Communications, 2018, 9(1): 2393. |
29 | Huang X, Qi X J, Boey F, et al. Graphene-based composites [J]. Chemical Society Reviews, 2012, 41(2): 666-686. |
30 | Wei H L, Han L L, Tang Y C, et al. Highly flexible heparin-modified chitosan/graphene oxide hybrid hydrogel as a super bilirubin adsorbent with excellent hemocompatibility [J]. Journal of Materials Chemistry B, 2015, 3(8): 1646-1654. |
31 | Ma C F, Gao Q, Xia K S, et al. Three-dimensionally porous graphene: a high-performance adsorbent for removal of albumin-bonded bilirubin [J]. Colloids and Surfaces B: Biointerfaces, 2017, 149: 146-153. |
32 | Song X, Huang X H, Li Z X, et al. Construction of blood compatible chitin/graphene oxide composite aerogel beads for the adsorption of bilirubin [J]. Carbohydrate Polymers, 2019, 207: 704-712. |
33 | Zhou J K, Zhang S Q, Song X, et al. Three-dimensional graphene oxide skeleton guided poly(acrylic acid) composite hydrogel particles with hierarchical pore structure for hemoperfusion [J]. ACS Biomaterials Science & Engineering, 2019, 5(8): 3987-4001. |
34 | Song X, Xu T, Yang L, et al. Self-anticoagulant nanocomposite spheres for the removal of bilirubin from whole blood: a step toward a wearable artificial liver [J]. Biomacromolecules, 2020, 21(5): 1762-1775. |
35 | Li Z T, Huang X H, Wu K K, et al. Fabrication of regular macro-mesoporous reduced graphene aerogel beads with ultra-high mechanical property for efficient bilirubin adsorption [J]. Materials Science & Engineering C, 2020, 106: 110282. |
36 | He C, Li M Y, Zhang J, et al. Amides and heparin-like polymer co-functionalized graphene oxide based core @ polyethersulfone based shell beads for bilirubin adsorption [J]. Macromolecular Bioscience, 2020, 20(8): 2000153. |
37 | Rosenbaum J L, Winsten S, Kramer M S, et al. Resin hemoperfusion in the treatment of drug intoxication [J]. Clinical Toxicology, 1972, 136(3): 263-266. |
38 | Nakaji S, Hayashi N. Bilirubin adsorption column medisorba BL-300 [J]. Therapeutic Apheresis and Dialysis, 2003, 7(1): 98-103. |
39 | Li Q S, Yang J, Cai N N, et al. Hemocompatible hemoadsorbent for effective removal of protein-bound toxin in serum [J]. Journal of Colloid and Interface Science, 2019, 555: 145-156. |
40 | Chen J, Han W Y, Chen J, et al. High performance of a unique mesoporous polystyrene-based adsorbent for blood purification [J]. Regenerative Biomaterials, 2017, 4(1): 31-37. |
41 | Cheng G H, Chai Y M, Chen J, et al. Polystyrene-divinylbenzene based nano-CaCO3 composites for the efficient removal of human tumor necrosis factor-alpha [J]. Chemical Communications, 2017, 53(55): 7744-7747. |
42 | Chen J, Cheng G H, Chai Y M, et al. Preparation of nano-CaCO3/polystyrene nanocomposite beads for efficient bilirubin removal [J]. Colloids and Surfaces B: Biointerfaces, 2018, 161: 480-487. |
43 | Chai Y M, Chen J, Wang T T, et al. Bead-type polystyrene/nano-CaCO3 (PS/nCaCO3) composite: a high-performance adsorbent for the removal of interleukin-6 [J]. Journal of Materials Chemistry B, 2019, 7(9): 1404-1414. |
44 | Kavoshchian M, Üzek R, Uyanık S A, et al. HSA immobilized novel polymeric matrix as an alternative sorbent in hemoperfusion columns for bilirubin removal [J]. Reactive and Functional Polymers, 2015, 96: 25-31. |
45 | Jiang X, Xiang T, Xie Y, et al. Functional polyethersulfone particles for the removal of bilirubin [J]. Journal of Materials Science: Materials in Medicine, 2016, 27(2): 28. |
46 | Jiang X, Zhou D X, Huang X L, et al. Hexanediamine functionalized poly (glycidyl methacrylate-co-N-vinylpyrrolidone) particles for bilirubin removal [J]. Journal of Colloid and Interface Science, 2017, 504: 214-222. |
47 | Song X, Wang K, Tang C Q, et al. Design of carrageenan-based heparin-mimetic gel beads as self-anticoagulant hemoperfusion adsorbents [J]. Biomacromolecules, 2018, 19(6): 1966-1978. |
48 | Tang T, Li X A, Xu Y, et al. Bilirubin adsorption on amine/methyl bifunctionalized SBA-15 with platelet morphology [J]. Colloids and Surfaces B: Biointerfaces, 2011, 84(2): 571-578. |
49 | Timin A S, Rumyantsev E V. Sol-gel synthesis of mesoporous silicas containing albumin and guanidine polymers and its application to the bilirubin adsorption [J]. Journal of Sol-Gel Science and Technology, 2013, 67(2): 297-303. |
50 | Timin A, Rumyantsev E, Solomonov A. Synthesis and application of amino-modified silicas containing albumin as hemoadsorbents for bilirubin adsorption [J]. Journal of Non-Crystalline Solids, 2014, 385: 81-88. |
51 | Timin A S, Solomonov A V, Rumyantsev E V. Polyacrylate guanidine and polymethacrylate guanidine as novel cationic polymers for effective bilirubin binding [J]. Journal of Polymer Research, 2014, 21(4): 400. |
52 | Timin A, Rumyantsev E, Lanin S N, et al. Preparation and surface properties of mesoporous silica particles modified with poly(N-vinyl-2-pyrrolidone) as a potential adsorbent for bilirubin removal [J]. Materials Chemistry and Physics, 2014, 147(3): 673-683. |
53 | Timin A S, Khashirova S Y, Zhansitov A, et al. Synthesis and application of silica hybrids grafted with new guanidine-containing polymers as highly effective adsorbents for bilirubin removal [J]. Colloid and Polymer Science, 2015, 293(6): 1667-1674. |
54 | Timin A S, Rumyantsev E V, Solomonov A V, et al. Preparation and characterization of organo-functionalized silicas for bilirubin removal [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 464: 65-77. |
55 | Tao G J, Bai Z Y, Chen Y, et al. Generic synthesis and versatile applications of molecularly organic–inorganic hybrid mesoporous organosilica nanoparticles with asymmetric Janus topologies and structures [J]. Nano Research, 2017, 10(11): 3790-3810. |
56 | Ngamcherdtrakul W, Morry J, Sangvanich T, et al. Removal of a gadolinium based contrast agent by a novel sorbent hemoperfusion in a chronic kidney disease (CKD) rodent model[J]. Scientific Reports, 2019, 9(1): 709. |
57 | Tan L, He R, Li Y X, et al. Fabrication of a biomimetic adsorbent imprinted with a common specificity determinant for the removal of alpha- and beta-amanitin from plasma [J]. Journal of Chromatography A, 2016, 1459: 1-8. |
58 | Wu K K, Yang W F, Jiao Y P, et al. A surface molecularly imprinted electrospun polyethersulfone (PES) fiber mat for selective removal of bilirubin [J]. Journal of Materials Chemistry B, 2017, 5(29): 5763-5773. |
59 | Osman B, Sagdilek E, Gumrukcu M, et al. Molecularly imprinted composite cryogel for extracorporeal removal of uric acid [J]. Colloids and Surfaces B: Biointerfaces, 2019, 183: 110456. |
60 | Göçenoğlu S A, Osman B, Çam T, et al. Molecularly imprinted surface plasmon resonance (SPR) sensor for uric acid determination [J]. Sensors and Actuators B: Chemical, 2017, 251: 763-772. |
61 | Xue M Q, Ling Y S, Wu G S, et al. Surface-modified anodic aluminum oxide membrane with hydroxyethyl celluloses as a matrix for bilirubin removal [J]. Journal of Chromatography B, 2013, 912: 1-7. |
62 | Wang W W, Zhang H, Zhang Z F, et al. Amine-functionalized PVA-co-PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin [J]. Colloids and Surfaces B: Biointerfaces, 2017, 150: 271-278. |
63 | Zhao R, Li Y M, Li X, et al. Facile hydrothermal synthesis of branched polyethylenimine grafted electrospun polyacrylonitrile fiber membrane as a highly efficient and reusable bilirubin adsorbent in hemoperfusion [J]. Journal of Colloid and Interface Science, 2018, 514: 675-685. |
64 | Fu C C, Hsiao Y S, Ke J W, et al. Adsorptive removal of p-cresol and creatinine from simulated serum using porous polyethersulfone mixed-matrix membranes [J]. Separation and Purification Technology, 2020, 245: 116884. |
65 | Tijink M S L, Wester M, Glorieux G, et al. Mixed matrix hollow fiber membranes for removal of protein-bound toxins from human plasma [J]. Biomaterials, 2013, 34(32): 7819-7828. |
66 | Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Advanced Materials, 2011, 23(37): 4248-4253. |
67 | Meng F Y, Seredych M, Chen C, et al. MXene sorbents for removal of urea from dialysate: a step toward the wearable artificial kidney [J]. ACS Nano, 2018, 12(10): 10518-10528. |
68 | Yuan S, Feng L, Wang K C, et al. Stable metal-organic frameworks: design, synthesis, and applications [J]. Advanced Materials, 2018, 30(37): 1704303. |
69 | Kato S, Otake K I, Chen H Y, et al. Zirconium-based metal-organic frameworks for the removal of protein-bound uremic toxin from human serum albumin [J]. Journal of the American Chemical Society, 2019, 141(6): 2568-2576. |
70 | Li Q S, Zhao W Q, Guo H S, et al. Metal-organic framework traps with record-high bilirubin removal capacity for hemoperfusion therapy [J]. ACS Applied Materials & Interfaces, 2020, 12(23): 25546-25556. |
71 | Li Q S, Guo H S, Yang J, et al. MOF-based antibiofouling hemoadsorbent for highly efficient removal of protein-bound bilirubin [J]. Langmuir, 2020, 36(30): 8753-8763. |
[1] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[2] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[3] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[4] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[5] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[6] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[7] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[8] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[9] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
[10] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[11] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[12] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[13] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
[14] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
[15] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||