CIESC Journal ›› 2021, Vol. 72 ›› Issue (11): 5643-5652.DOI: 10.11949/0438-1157.20211030
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yu LIANG1(),Tong ZHAO1,Binbin ZHAO1,Lei LIU1(),Jinxiang DONG1,Mingxing TANG2,Xuekuan LI2
Received:
2021-07-23
Revised:
2021-09-07
Online:
2021-11-12
Published:
2021-11-05
Contact:
Lei LIU
梁瑜1(),赵彤1,赵斌彬1,刘雷1(),董晋湘1,唐明兴2,李学宽2
通讯作者:
刘雷
作者简介:
梁瑜(1993—),女,博士研究生,基金资助:
CLC Number:
Yu LIANG, Tong ZHAO, Binbin ZHAO, Lei LIU, Jinxiang DONG, Mingxing TANG, Xuekuan LI. Promotion of WO3 species on Pt/α-Al2O3 for the deep hydrogenation of naphthalene[J]. CIESC Journal, 2021, 72(11): 5643-5652.
梁瑜, 赵彤, 赵斌彬, 刘雷, 董晋湘, 唐明兴, 李学宽. WO3对Pt/α-Al2O3催化萘深度加氢的促进作用[J]. 化工学报, 2021, 72(11): 5643-5652.
Add to citation manager EndNote|Ris|BibTeX
Fig.7 The reaction results for naphthalene hydrogenation over 1%Pt-xWO3/α-Al2O3 catalyst (reaction conditions: 5 ml naphthalene solution of 0.05 mol/L, 0.02 g catalyst, 3 MPa initial H2 pressure, temperature of 70℃, and time of 1 h)
Fig. 8 The reaction results for naphthalene hydrogenation over yPt-20%WO3/α-Al2O3 catalyst (reaction conditions: 5 ml naphthalene solution of 0.05 mol/L, 0.02 g catalyst, 3 MPa initial H2 pressure, temperature of 70℃, and time of 1 h)
Fig.9 Catalytic results for naphthalene hydrogenation over 1%Pt-20%WO3/α-Al2O3 at various reaction temperature (reaction conditions: 5 ml naphthalene solution of 0.05 mol/L, 0.02 g catalyst, 3 MPa initial H2 pressure, and time of 1 h)
Fig.10 Reusability of the 1%Pt-20%WO3/α-Al2O3 catalyst for naphthalene hydrogenation (reaction conditions: 5 ml naphthalene solution of 0.05 mol/L, 0.02 g catalyst, 3 MPa initial H2 pressure, and time of 1 h)
1 | 史晓斐, 杨思宇, 钱宇. 化学链技术在煤炭清洁高效利用中的研究进展[J]. 化工学报, 2018, 69(12): 4931-4946. |
Shi X F, Yang S Y, Qian Y. Chemical looping technology for clean and highly efficient coal processes[J]. CIESC Journal, 2018, 69(12): 4931-4946. | |
2 | 蔡达理, 熊昊, 张晨曦, 等. 从分子筛上纳尺度离散行为控制到宏观煤化工过程[J]. 化工学报, 2020, 71(9): 3849-3865. |
Cai D L, Xiong H, Zhang C X, et al. From nanoscale discrete diffusion behavior control to macroscale coal chemical process[J]. CIESC Journal, 2020, 71(9): 3849-3865. | |
3 | 宋会. 工业萘两步催化加氢制十氢萘的研究[D]. 大连: 大连理工大学, 2015. |
Song H. Two-step catalytic hydrogenation of industrial naphthalene to decalin[D]. Dalian: Dalian University of Technology, 2015. | |
4 | Pang M, Liu C Y, Xia W, et al. Activated carbon supported molybdenum carbides as cheap and highly efficient catalyst in the selective hydrogenation of naphthalene to tetralin[J]. Green Chemistry, 2012, 14(5): 1272. |
5 | 谭凤宜. 固定床法萘催化加氢合成十氢萘工艺研究[D]. 南京: 南京工业大学, 2006. |
Tan F Y. Study on hydrogenation of naphthalene to decalin in a fixed bed reactor[D]. Nanjing: Nanjing University of Technology, 2006. | |
6 | 张媛媛, 赵静, 鲁锡兰, 等. 有机液体储氢材料的研究进展[J]. 化工进展, 2016, 35(9): 2869-2874. |
Zhang Y Y, Zhao J, Lu X L, et al. Progress in liquid organic hydrogen storage materials[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2869-2874. | |
7 | 杨平, 辛靖, 李明丰, 等. 四氢萘加氢转化研究进展[J]. 石油炼制与化工, 2011, 42(8): 1-6. |
Yang P, Xin J, Li M F, et al. Research advances in the hydroconversion of tetralin[J]. Petroleum Processing and Petrochemicals, 2011, 42(8): 1-6. | |
8 | 郑修新, 赵甲, 孙国方, 等. 萘加氢催化剂的研究进展[J]. 化工进展, 2015, 34(5): 1295-1299. |
Zheng X X, Zhao J, Sun G F, et al. Research progress in catalysts for the hydrogenation of naphthalene[J]. Chemical Industry and Engineering Progress, 2015, 34(5): 1295-1299. | |
9 | Egorova M, Prins R. Competitive hydrodesulfurization of 4,6-dimethyldibenzothiophene, hydrodenitrogenation of 2-methylpyridine, and hydrogenation of naphthalene over sulfided NiMo/γ- Al2O3[J]. Journal of Catalysis, 2004, 224(2): 278-287. |
10 | Albertazzi S, Busca G, Finocchio E, et al. New Pd/Pt on Mg/Al basic mixed oxides for the hydrogenation and hydrogenolysis of naphthalene[J]. Journal of Catalysis, 2004, 223(2): 372-381. |
11 | Chen H L, Yang H, Omotoso O, et al. Contribution of hydrogen spillover to the hydrogenation of naphthalene over diluted Pt/RHO catalysts[J]. Applied Catalysis A: General, 2009, 358(2): 103-109. |
12 | Albertazzi S, Ganzerla R, Gobbi C, et al. Hydrogenation of naphthalene on noble-metal-containing mesoporous MCM-41 aluminosilicates[J]. Journal of Molecular Catalysis A: Chemical, 2003, 200(1/2): 261-270. |
13 | Liu J J, Zhang H F, Lu N Y, et al. Influence of acidity of mesoporous ZSM-5-supported Pt on naphthalene hydrogenation[J]. Industrial & Engineering Chemistry Research, 2020, 59(3): 1056-1064. |
14 | Kishore Kumar S A, John M, Pai S M, et al. Low temperature hydrogenation of aromatics over Pt-Pd/SiO2-Al2O3 catalyst[J]. Fuel Processing Technology, 2014, 128: 303-309. |
15 | Huang T C, Kang B C. Hydrogenation of naphthalene with platinum-aluminium borate catalysts[J]. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1996, 63(1): 27-36. |
16 | Zheng J, Guo M, Song C S. Characterization of Pd catalysts supported on USY zeolites with different SiO2/Al2O3 ratios for the hydrogenation of naphthalene in the presence of benzothiophene[J]. Fuel Processing Technology, 2008, 89(4): 467-474. |
17 | Sun W D, Zhao Z B, Guo C, et al. Study of the alkylation of isobutane with n-butene over WO3/ZrO2 strong solid acid(Ⅰ): Effect of the preparation method, WO3 loading, and calcination temperature[J]. Industrial & Engineering Chemistry Research, 2000, 39(10): 3717-3725. |
18 | Papp J, Soled S, Dwight K, et al. Surface acidity and photocatalytic activity of TiO2, WO3/TiO2, and MoO3/TiO2 photocatalysts[J]. Chemistry of Materials, 1994, 6(4): 496-500. |
19 | Zhou M X, Yang M, Yang X F, et al. On the mechanism of H2 activation over single-atom catalyst: an understanding of Pt1/WOx in the hydrogenolysis reaction[J]. Chinese Journal of Catalysis, 2020, 41(3): 524-532. |
20 | Kurosaka T, Maruyama H, Naribayashi I, et al. Production of 1,3-propanediol by hydrogenolysis of glycerol catalyzed by Pt/WO3/ZrO2[J]. Catalysis Communications, 2008, 9(6): 1360-1363. |
21 | García-Fernández S, Gandarias I, Requies J, et al. The role of tungsten oxide in the selective hydrogenolysis of glycerol to 1,3-propanediol over Pt/WOx/Al2O3[J]. Applied Catalysis B: Environmental, 2017, 204: 260-272. |
22 | García-Fernández S, Gandarias I, Requies J, et al. New approaches to the Pt/WOx/Al2O3 catalytic system behavior for the selective glycerol hydrogenolysis to 1,3-propanediol[J]. Journal of Catalysis, 2015, 323: 65-75. |
23 | Barton D G, Shtein M, Wilson R D, et al. Structure and electronic properties of solid acids based on tungsten oxide nanostructures[J]. The Journal of Physical Chemistry B, 1999, 103(4): 630-640. |
24 | Arundhathi R, Mizugaki T, Mitsudome T, et al. Highly selective hydrogenolysis of glycerol to 1,3-propanediol over a boehmite-supported platinum/tungsten catalyst[J]. ChemSusChem, 2013, 6(8): 1345-1347. |
25 | Kim T, Burrows A, Kiely C J, et al. Molecular/electronic structure-surface acidity relationships of model-supported tungsten oxide catalysts[J]. Journal of Catalysis, 2007, 246(2): 370-381. |
26 | 谭训彦, 王昕, 尹衍升, 等. α-Al2O3的晶体结构与价电子结构[J]. 中国有色金属学报, 2002, 12(z1): 18-23. |
Tan X Y, Wang X, Yin Y S, et al. Crystal structure and valence electron structure of α-Al2O3[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(z1): 18-23. | |
27 | Lee S H, Cheong H M, Tracy C E, et al. Raman spectroscopic studies of electrochromic a-WO3[J]. Electrochimica Acta, 1999, 44(18): 3111-3115. |
28 | Farbotko J, Rynkowski J, Touroude R. Efekty SMSI w katalizatorach Pt/WO3/Al2O3[J]. Zeszyty Naukowe, 1998,46: 133-146. |
29 | Qin L Z, Song M J, Chen C L. Aqueous-phase deoxygenation of glycerol to 1,3-propanediol over Pt/WO3/ZrO2 catalysts in a fixed-bed reactor[J]. Green Chemistry, 2010, 12(8): 1466. |
30 | Zhu S H, Qiu Y N, Zhu Y L, et al. Hydrogenolysis of glycerol to 1,3-propanediol over bifunctional catalysts containing Pt and heteropolyacids[J]. Catalysis Today, 2013, 212: 120-126. |
31 | Alexeev O S, Graham G W, Shelef M, et al. γ-Al2O3-supported Pt catalysts with extremely high dispersions resulting from Pt-W interactions[J]. Journal of Catalysis, 2000, 190(1): 157-172. |
32 | Wang J, Zhao X C, Lei N, et al. Hydrogenolysis of glycerol to 1, 3-propanediol under low hydrogen pressure over WOx-supported single/pseudo-single atom Pt catalyst[J]. ChemSusChem, 2016, 9(8): 784-790. |
33 | Parry E P. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity[J]. Journal of Catalysis, 1963, 2(5): 371-379. |
34 | Impéror-Clerc M, Davidson P, Davidson A. Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers[J]. Journal of the American Chemical Society, 2000, 122(48): 11925-11933. |
35 | Zhou W, Luo J, Wang Y, et al. WOx domain size, acid properties and mechanistic aspects of glycerol hydrogenolysis over Pt/WOx/ZrO2[J]. Applied Catalysis B: Environmental, 2019, 242: 410-421. |
[1] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[2] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[3] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[4] | Yihao ZHANG, Zhenlei WANG. Fault detection using grouped support vector data description based on maximum information coefficient [J]. CIESC Journal, 2023, 74(9): 3865-3878. |
[5] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[6] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[7] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[8] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[9] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[10] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[11] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[12] | Zhiping ZHAO, Chen CHEN, Qiong TANG, Hong XU, Lei LIU, Jinxiang DONG. Rheological and tribological properties of poly-hexylnaphthalene/ poly-α-olefin lithium grease [J]. CIESC Journal, 2023, 74(6): 2555-2564. |
[13] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[14] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[15] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||