CIESC Journal ›› 2021, Vol. 72 ›› Issue (11): 5820-5830.DOI: 10.11949/0438-1157.20210895
• Energy and environmental engineering • Previous Articles Next Articles
Yaojun YANG(),Rui DIAO,Chu WANG,Xifeng ZHU()
Received:
2021-06-30
Revised:
2021-08-08
Online:
2021-11-12
Published:
2021-11-05
Contact:
Xifeng ZHU
通讯作者:
朱锡锋
作者简介:
杨耀钧(1998—),男,硕士研究生,基金资助:
CLC Number:
Yaojun YANG, Rui DIAO, Chu WANG, Xifeng ZHU. Catalytic effect of different metal oxides on pyrolysis behaviors of heavy bio-oil: a comparative study[J]. CIESC Journal, 2021, 72(11): 5820-5830.
杨耀钧, 刁瑞, 王储, 朱锡锋. 不同金属氧化物对重质生物油再裂解的比较性研究[J]. 化工学报, 2021, 72(11): 5820-5830.
Add to citation manager EndNote|Ris|BibTeX
元素分析 war/% | 工业分析war/% | 热值/(MJ/kg) | pH | ||||||
---|---|---|---|---|---|---|---|---|---|
C | H | O① | N | 水分 | 挥发分 | 固定碳 | 灰分 | ||
65.33 | 6.15 | 27.83 | 0.69 | 9.75 | 75.71 | 13.17 | 1.37 | 25.5 | 3.47 |
Table 1 Physical and chemical properties of heavy bio-oil
元素分析 war/% | 工业分析war/% | 热值/(MJ/kg) | pH | ||||||
---|---|---|---|---|---|---|---|---|---|
C | H | O① | N | 水分 | 挥发分 | 固定碳 | 灰分 | ||
65.33 | 6.15 | 27.83 | 0.69 | 9.75 | 75.71 | 13.17 | 1.37 | 25.5 | 3.47 |
组分 | 相对峰面积/% | |||||
---|---|---|---|---|---|---|
HB | HB-Fe | HB-Al | HB-Ca | HB-Ti | Raw | |
甲酸甲酯 | — | — | — | — | — | 0.53 |
苯 | — | 0.73 | 0.98 | 0.55 | 0.67 | — |
丙酸乙酯 | 0.99 | — | — | — | — | — |
七甲基二乙酸酯 | — | — | 0.56 | — | 0.54 | — |
苯酚 | 2.91 | 2.70 | 2.45 | 2.68 | 2.99 | 2.03 |
乙酸环辛酯 | 1.29 | 0.99 | 1.20 | 0.90 | 1.12 | 0.82 |
间甲酚 | 2.17 | 2.25 | 2.31 | 1.89 | 2.18 | 1.29 |
愈创木酚 | 9.92 | 9.66 | 9.68 | 11.43 | 8.68 | 6.12 |
2-乙基苯酚 | 1.09 | 1.09 | 1.56 | 1.66 | 1.04 | — |
邻环己醇甲酸乙酯 | 0.70 | — | 0.50 | — | — | — |
2,3-二甲基苯酚 | 1.50 | 1.69 | 1.75 | — | 1.91 | — |
3-正-丙基苯酚 | — | — | — | — | — | 2.69 |
萘 | 1.75 | 1.69 | 1.93 | 3.33 | 1.96 | 2.25 |
4-甲基愈创木酚 | 9.17 | 8.79 | 8.84 | 8.16 | 8.93 | 5.31 |
3-甲基-5-乙基苯酚 | 1.55 | 1.62 | 1.31 | 0.91 | 1.54 | 0.74 |
4-乙基愈创木酚 | 9.88 | 9.39 | 9.51 | 8.38 | 9.42 | 6.15 |
1-甲基萘 | — | — | — | 1.27 | — | — |
2,3,5,6-四甲基苯酚 | — | — | — | 0.75 | 0.51 | — |
丁香酚 | 17.65 | 18.22 | 19.01 | 19.02 | 19.17 | 18.94 |
二氢丁香酚 | 6.12 | 6.43 | 5.24 | 5.60 | 4.95 | 5.06 |
2,4-二甲氧基苯酚 | — | — | 1.40 | — | 1.33 | — |
2,4-二甲氧基甲苯 | — | 0.52 | — | — | 0.62 | 1.64 |
松柏醇 | 0.63 | 0.61 | 1.18 | — | 0.66 | 2.48 |
四甲基对苯二酚 | 0.94 | 1.07 | 0.94 | 1.05 | 0.96 | 0.65 |
5-叔丁基焦棓酚 | 2.74 | 2.81 | 2.68 | 2.92 | 2.68 | 2.65 |
5-仲丁基邻苯三酚 | 0.97 | 1.21 | 1.01 | 1.02 | 1.16 | — |
4-羟基-3-叔丁基-苯甲醚 | 0.51 | 0.56 | — | 0.62 | — | — |
2,4,6-三甲氧基苯甲醛 | 2.80 | 2.97 | 2.60 | 2.70 | 2.99 | — |
2-(十八氧基)乙醇 | — | 0.58 | — | 1.12 | 0.62 | 2.57 |
2-叔丁基-1,4-二甲氧基苯 | — | — | — | — | 0.64 | — |
3-羟基-4-甲氧基肉桂酸 | 0.72 | 0.92 | 0.96 | 0.80 | 1.09 | 7.27 |
蒽 | — | — | — | — | 0.69 | 0.75 |
甲基-4-羟基硬脂酸酯 | — | — | — | — | 0.59 | — |
2-甲基十六烷酸 | 0.80 | 0.87 | 0.81 | 1.22 | 0.87 | — |
硬脂酸 | — | 0.69 | 0.68 | — | 0.62 | — |
棕榈酸甲酯 | — | — | — | — | — | 0.71 |
棕榈酸乙酯 | 1.20 | — | — | — | — | — |
木焦油酸 | — | — | — | — | — | 1.34 |
油酸 | 7.66 | 6.79 | 6.43 | 5.29 | 5.96 | 8.21 |
硬脂酸乙酯 | 0.57 | — | — | — | — | — |
Table 5 Relative peak area of crude oil and main products after catalytic pyrolysis
组分 | 相对峰面积/% | |||||
---|---|---|---|---|---|---|
HB | HB-Fe | HB-Al | HB-Ca | HB-Ti | Raw | |
甲酸甲酯 | — | — | — | — | — | 0.53 |
苯 | — | 0.73 | 0.98 | 0.55 | 0.67 | — |
丙酸乙酯 | 0.99 | — | — | — | — | — |
七甲基二乙酸酯 | — | — | 0.56 | — | 0.54 | — |
苯酚 | 2.91 | 2.70 | 2.45 | 2.68 | 2.99 | 2.03 |
乙酸环辛酯 | 1.29 | 0.99 | 1.20 | 0.90 | 1.12 | 0.82 |
间甲酚 | 2.17 | 2.25 | 2.31 | 1.89 | 2.18 | 1.29 |
愈创木酚 | 9.92 | 9.66 | 9.68 | 11.43 | 8.68 | 6.12 |
2-乙基苯酚 | 1.09 | 1.09 | 1.56 | 1.66 | 1.04 | — |
邻环己醇甲酸乙酯 | 0.70 | — | 0.50 | — | — | — |
2,3-二甲基苯酚 | 1.50 | 1.69 | 1.75 | — | 1.91 | — |
3-正-丙基苯酚 | — | — | — | — | — | 2.69 |
萘 | 1.75 | 1.69 | 1.93 | 3.33 | 1.96 | 2.25 |
4-甲基愈创木酚 | 9.17 | 8.79 | 8.84 | 8.16 | 8.93 | 5.31 |
3-甲基-5-乙基苯酚 | 1.55 | 1.62 | 1.31 | 0.91 | 1.54 | 0.74 |
4-乙基愈创木酚 | 9.88 | 9.39 | 9.51 | 8.38 | 9.42 | 6.15 |
1-甲基萘 | — | — | — | 1.27 | — | — |
2,3,5,6-四甲基苯酚 | — | — | — | 0.75 | 0.51 | — |
丁香酚 | 17.65 | 18.22 | 19.01 | 19.02 | 19.17 | 18.94 |
二氢丁香酚 | 6.12 | 6.43 | 5.24 | 5.60 | 4.95 | 5.06 |
2,4-二甲氧基苯酚 | — | — | 1.40 | — | 1.33 | — |
2,4-二甲氧基甲苯 | — | 0.52 | — | — | 0.62 | 1.64 |
松柏醇 | 0.63 | 0.61 | 1.18 | — | 0.66 | 2.48 |
四甲基对苯二酚 | 0.94 | 1.07 | 0.94 | 1.05 | 0.96 | 0.65 |
5-叔丁基焦棓酚 | 2.74 | 2.81 | 2.68 | 2.92 | 2.68 | 2.65 |
5-仲丁基邻苯三酚 | 0.97 | 1.21 | 1.01 | 1.02 | 1.16 | — |
4-羟基-3-叔丁基-苯甲醚 | 0.51 | 0.56 | — | 0.62 | — | — |
2,4,6-三甲氧基苯甲醛 | 2.80 | 2.97 | 2.60 | 2.70 | 2.99 | — |
2-(十八氧基)乙醇 | — | 0.58 | — | 1.12 | 0.62 | 2.57 |
2-叔丁基-1,4-二甲氧基苯 | — | — | — | — | 0.64 | — |
3-羟基-4-甲氧基肉桂酸 | 0.72 | 0.92 | 0.96 | 0.80 | 1.09 | 7.27 |
蒽 | — | — | — | — | 0.69 | 0.75 |
甲基-4-羟基硬脂酸酯 | — | — | — | — | 0.59 | — |
2-甲基十六烷酸 | 0.80 | 0.87 | 0.81 | 1.22 | 0.87 | — |
硬脂酸 | — | 0.69 | 0.68 | — | 0.62 | — |
棕榈酸甲酯 | — | — | — | — | — | 0.71 |
棕榈酸乙酯 | 1.20 | — | — | — | — | — |
木焦油酸 | — | — | — | — | — | 1.34 |
油酸 | 7.66 | 6.79 | 6.43 | 5.29 | 5.96 | 8.21 |
硬脂酸乙酯 | 0.57 | — | — | — | — | — |
样品 | 反应起始 温度Ti/℃ | 最大失重 温度Tp/℃ | 反应结束 温度Tf/℃ | 净剩余 质量/% |
---|---|---|---|---|
HB | 105.11 | 216.88 | 783.67 | 17.85 |
HB-Fe | 106.70 | 132.47 | 853.00 | 14.06 |
HB-Al | 101.00 | 210.66 | 807.67 | 16.60 |
HB-Ca | 103.74 | 222.21 | 906.33 | 22.69 |
HB-Ti | 108.30 | 214.15 | 761.00 | 18.93 |
Table 2 TG-DTG characteristic parameters of heavy bio-oil
样品 | 反应起始 温度Ti/℃ | 最大失重 温度Tp/℃ | 反应结束 温度Tf/℃ | 净剩余 质量/% |
---|---|---|---|---|
HB | 105.11 | 216.88 | 783.67 | 17.85 |
HB-Fe | 106.70 | 132.47 | 853.00 | 14.06 |
HB-Al | 101.00 | 210.66 | 807.67 | 16.60 |
HB-Ca | 103.74 | 222.21 | 906.33 | 22.69 |
HB-Ti | 108.30 | 214.15 | 761.00 | 18.93 |
组分种类 | 官能团 | 特征波长/cm-1 |
---|---|---|
醇类 | C—O(H)/O—H | 1058 |
酚类/醚类 | C—O/O—H | 1178 |
烷烃 | C—H | 1372 |
芳香族化合物 | 苯基 | 1510 |
酸类/酯类 | CO | 1798 |
CO2 | CO | 2360 |
CH4 | C—H | 2936 |
H2O | O—H | 3582 |
Table 3 IR bands of typical products and functional groups to samples
组分种类 | 官能团 | 特征波长/cm-1 |
---|---|---|
醇类 | C—O(H)/O—H | 1058 |
酚类/醚类 | C—O/O—H | 1178 |
烷烃 | C—H | 1372 |
芳香族化合物 | 苯基 | 1510 |
酸类/酯类 | CO | 1798 |
CO2 | CO | 2360 |
CH4 | C—H | 2936 |
H2O | O—H | 3582 |
Fig.4 IR absorbance distributions with temperature during catalytic pyrolysis(a) alcohols; (b) phenols, ethers; (c) alkanes; (d) aromatics; (e) carboxylic acids, esters; (f) CO2; (g) CH4; (h) H2O
样品 | 固相产物/% | 液相产物/% | 气相产物①/% |
---|---|---|---|
HB | 17.47% | 39.37% | 43.16% |
HB-Fe | 13.59% | 44.55% | 41.86% |
HB-Al | 16.21% | 44.02% | 39.77% |
HB-Ca | 21.36% | 32.00% | 46.64% |
HB-Ti | 17.53% | 45.59% | 36.88% |
Table 4 Phase yield distribution
样品 | 固相产物/% | 液相产物/% | 气相产物①/% |
---|---|---|---|
HB | 17.47% | 39.37% | 43.16% |
HB-Fe | 13.59% | 44.55% | 41.86% |
HB-Al | 16.21% | 44.02% | 39.77% |
HB-Ca | 21.36% | 32.00% | 46.64% |
HB-Ti | 17.53% | 45.59% | 36.88% |
组分 | 相对含量/% | ||||
---|---|---|---|---|---|
HB | HB-Fe | HB-Al | HB-Ca | HB-Ti | |
苯酚 | 0.80 | 0.71 | 0.65 | 0.72 | 0.86 |
愈创木酚 | 2.41 | 2.26 | 2.50 | 3.21 | 2.53 |
4-甲基愈创木酚 | 3.17 | 2.15 | 2.38 | 2.44 | 2.63 |
4-乙基愈创木酚 | 3.08 | 2.58 | 2.61 | 2.31 | 3.34 |
丁香酚 | 4.98 | 5.04 | 5.29 | 4.99 | 5.60 |
Table 6 Relative content of main products after catalytic pyrolysis
组分 | 相对含量/% | ||||
---|---|---|---|---|---|
HB | HB-Fe | HB-Al | HB-Ca | HB-Ti | |
苯酚 | 0.80 | 0.71 | 0.65 | 0.72 | 0.86 |
愈创木酚 | 2.41 | 2.26 | 2.50 | 3.21 | 2.53 |
4-甲基愈创木酚 | 3.17 | 2.15 | 2.38 | 2.44 | 2.63 |
4-乙基愈创木酚 | 3.08 | 2.58 | 2.61 | 2.31 | 3.34 |
丁香酚 | 4.98 | 5.04 | 5.29 | 4.99 | 5.60 |
1 | Cheng S Y, Wei L, Julson J, et al. Hydrocarbon bio-oil production from pyrolysis bio-oil using non-sulfide Ni-Zn/Al2O3 catalyst[J]. Fuel Processing Technology, 2017, 162: 78-86.. |
2 | 陈军昊, 卢亮, 王树荣. 基于分子蒸馏的模拟生物油温和加氢研究[J]. 燃料化学学报, 2017, 45(9): 1056-1063. |
Chen J H, Lu L, Wang S R. Mild hydrogenation of simulated bio-oil based on molecular distillation[J]. Journal of Fuel Chemistry and Technology, 2017, 45(9): 1056-1063. | |
3 | Qu W D, Wei L, Julson J. An exploration of improving the properties of heavy bio-oil[J]. Energy & Fuels, 2013, 27(8): 4717-4722. |
4 | 颜蓓蓓, 王建, 刘彬, 等. 生物油金属水热原位加氢提质技术研究进展[J]. 化工学报, 2021, 72(4): 1783-1795. |
Yan B B, Wang J, Liu B, et al. Research progress of bio-oil metal hydrothermal in situ hydrogenation technology[J]. CIESC Journal, 2021, 72(4): 1783-1795. | |
5 | Wang C, Luo Z J, Diao R, et al. Study on the effect of condensing temperature of walnut shells pyrolysis vapors on the composition and properties of bio-oil[J]. Bioresource Technology, 2019, 285: 121370. |
6 | Wang C, Yuan X H, Li S S, et al. Enrichment of phenolic products in walnut shell pyrolysis bio-oil by combining torrefaction pretreatment with fractional condensation[J]. Renewable Energy, 2021, 169: 1317-1329. |
7 | Ma S W, Zhang L Q, Zhu L, et al. Preparation of multipurpose bio-oil from rice husk by pyrolysis and fractional condensation[J]. Journal of Analytical and Applied Pyrolysis, 2018, 131: 113-119. |
8 | 马善为. 生物质热解气建模与分级冷凝研究[D]. 合肥: 中国科学技术大学, 2018. |
Ma S W. Study of modeling and fractional condensation of biomass pyrolysis gas[D]. Hefei: University of Science and Technology of China, 2018. | |
9 | 李时瑛, 朱谢飞, 张立强, 等. 基于不同萃取剂的生物油常压蒸馏研究[J]. 燃料化学学报, 2019, 47(3): 312-317. |
Li S Y, Zhu X F, Zhang L Q, et al. Atmospheric distillation of bio-oil based on different extractants[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 312-317. | |
10 | 李时瑛. 生物油预处理结合常压蒸馏改善生物油下游产品的品质[D]. 合肥: 中国科学技术大学, 2020. |
Li S Y. Improved bio-oil distilling effect by bio-oil pretreatment to enhance the qualities of bio-oil products[D]. Hefei: University of Science and Technology of China, 2020. | |
11 | 罗泽军, 胡永华, 王雨松, 等. 重质生物油理化性质及其热解特性研究[J]. 化工学报, 2019, 70(8): 3196-3201. |
Luo Z J, Hu Y H, Wang Y S, et al. Physicochemical properties and pyrolysis characteristics of heavy bio-oil[J]. CIESC Journal, 2019, 70(8): 3196-3201. | |
12 | Luo Z J, Zhu X F, Wang C, et al. Comparative study on the evolution of physicochemical properties of tar obtained from heavy fraction of bio-oil at different heating rates[J]. Journal of Analytical and Applied Pyrolysis, 2020, 150: 104854. |
13 | Mortensen P M, Grunwaldt J D, Jensen P A, et al. A review of catalytic upgrading of bio-oil to engine fuels[J]. Applied Catalysis A: General, 2011, 407(1/2): 1-19. |
14 | Uemura Y, Tran N T T, Naqvi S R, et al. Nano-catalysts for upgrading bio-oil: catalytic decarboxylation and hydrodeoxygenation[J]. AIP Conference Proceedings, 2017, 1877(1): 020002. |
15 | Oh S, Lee J H, Choi J W. Hydrodeoxygenation of crude bio-oil with various metal catalysts in a continuous-flow reactor and evaluation of emulsion properties of upgraded bio-oil with petroleum fuel[J]. Renewable Energy, 2020, 160: 1160-1167. |
16 | 孙来芝, 陈雷, 赵保峰, 等. Mo/ZSM-5催化作用下生物质快速热解制生物油实验研究[J]. 化工学报, 2019, 70(8): 3160-3166. |
Sun L Z, Chen L, Zhao B F, et al. Experiment research on catalytic fast pyrolysis of biomass into bio-oils over Mo/ZSM-5 catalyst[J]. CIESC Journal, 2019, 70(8): 3160-3166. | |
17 | 张淑梅, 王允圃, 夏美玲, 等. 生物质双级催化热解制备燃料化学品的研究进展[J]. 化工进展, 2021, 40(5): 2496-2508. |
Zhang S M, Wang Y P, Xia M L, et al. Research progress in preparation of fuel chemicals by dual catalytic pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2496-2508. | |
18 | Liu C, Wang H, Karim A M, et al. Catalytic fast pyrolysis of lignocellulosic biomass[J]. Chemical Society Reviews, 2014, 43(22): 7594-7623. |
19 | 仉利, 姚宗路, 赵立欣, 等. 生物质热化学转化提质及其催化剂研究进展[J]. 化工学报, 2020, 71(8): 3416-3427. |
Zhang L, Yao Z L, Zhao L X, et al. Research progress on thermochemical conversion of biomass to enhance quality and catalyst[J]. CIESC Journal, 2020, 71(8): 3416-3427. | |
20 | Tang W W, Zhang X H, Zhang Q, et al. Hydrodeoxygenation of anisole over Ni/α-Al2O3 catalyst[J]. Chinese Journal of Chemical Physics, 2016, 29(5): 617-622. |
21 | Chong Y Y, Thangalazhy-Gopakumar S, Ng H K, et al. Effect of oxide catalysts on the properties of bio-oil from in situ catalytic pyrolysis of palm empty fruit bunch fiber[J]. Journal of Environmental Management, 2019, 247: 38-45. |
22 | 孙孟超, 袁鑫华, 罗泽军, 等. 蒸馏温度对核桃壳生物油馏分组分分布的影响[J]. 燃料化学学报, 2020, 48(10): 1179-1185. |
Sun M C, Yuan X H, Luo Z J, et al. Influence of heating temperatures on the component distribution of distillates derived from walnut shell bio-oil[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1179-1185. | |
23 | Fang S W, Yu Z S, Ma X Q, et al. Analysis of catalytic pyrolysis of municipal solid waste and paper sludge using TG-FTIR, Py-GC/MS and DAEM (distributed activation energy model)[J]. Energy, 2018, 143: 517-532. |
24 | Pickard S, Daood S S, Pourkashanian M, et al. Robust extension of the Coats-Redfern technique: reviewing rapid and realiable reactivity analysis of complex fuels decomposing in inert and oxidizing thermogravimetric analysis atmospheres[J]. Energy & Fuels, 2013, 27(5): 2818-2826. |
25 | Fang S W, Yu Z S, Lin Y, et al. Effects of additives on the co-pyrolysis of municipal solid waste and paper sludge by using thermogravimetric analysis[J]. Bioresource Technology, 2016, 209: 265-272. |
26 | Zou X W, Yao J Z, Yang X M, et al. Catalytic effects of metal chlorides on the pyrolysis of lignite[J]. Energy & Fuels, 2007, 21(2): 619-624. |
27 | Liu Q, Wang S R, Zheng Y, et al. Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(1): 170-177. |
28 | Chen L, Yu Z S, Liang J Y, et al. Co-pyrolysis of chlorella vulgaris and kitchen waste with different additives using TG-FTIR and Py-GC/MS[J]. Energy Conversion and Management, 2018, 177: 582-591. |
29 | Liu L L, Kumar S, Wang Z H, et al. Catalytic effect of metal chlorides on coal pyrolysis and gasification (part Ⅰ): Combined TG-FTIR study for coal pyrolysis[J]. Thermochimica Acta, 2017, 655: 331-336. |
30 | Wang S R, Dai G X, Yang H P, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
31 | Lin X N, Zhang Z F, Zhang Z J, et al. Catalytic fast pyrolysis of a wood-plastic composite with metal oxides as catalysts[J]. Waste Management, 2018, 79: 38-47. |
32 | Lin Y Y, Zhang C, Zhang M C, et al. Deoxygenation of bio-oil during pyrolysis of biomass in the presence of CaO in a fluidized-bed reactor[J]. Energy & Fuels, 2010, 24(10): 5686-5695. |
33 | Diao R, Zhu X F, Wang C, et al. Synergistic effect of physicochemical properties and reaction temperature on gasification reactivity of walnut shell chars[J]. Energy Conversion and Management, 2020, 204: 112313. |
34 | Huang Y Q, Yin X L, Wu C Z, et al. Effects of metal catalysts on CO2 gasification reactivity of biomass char[J]. Biotechnology Advances, 2009, 27(5): 568-572. |
[1] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[4] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[5] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[6] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[7] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[8] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[9] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[10] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[11] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[12] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[13] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[14] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[15] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||