CIESC Journal ›› 2021, Vol. 72 ›› Issue (12): 6188-6202.DOI: 10.11949/0438-1157.20210624
• Reviews and monographs • Previous Articles Next Articles
Ya ZHANG1(),Rui WANG1,Sisi WEN1,Yisa ZHOU1,Jian XUE1(),Haihui WANG2()
Received:
2021-05-07
Revised:
2021-10-28
Online:
2021-12-22
Published:
2021-12-05
Contact:
Jian XUE,Haihui WANG
张娅1(),王锐1,文思斯1,周燚洒1,薛健1(),王海辉2()
通讯作者:
薛健,王海辉
作者简介:
张娅(1997—),女,硕士研究生,基金资助:
CLC Number:
Ya ZHANG, Rui WANG, Sisi WEN, Yisa ZHOU, Jian XUE, Haihui WANG. Research progress of graphitic carbon nitride nanosheets membrane[J]. CIESC Journal, 2021, 72(12): 6188-6202.
张娅, 王锐, 文思斯, 周燚洒, 薛健, 王海辉. 石墨相氮化碳纳米片膜研究进展[J]. 化工学报, 2021, 72(12): 6188-6202.
Add to citation manager EndNote|Ris|BibTeX
1 | Zhang Z, Wen L P, Jiang L. Bioinspired smart asymmetric nanochannel membranes[J]. Chemical Society Reviews, 2018, 47(2): 322-356. |
2 | Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
3 | Monjezi B H, Kutonova K, Tsotsalas M, et al. Current trends in metal-organic and covalent organic framework membrane materials[J]. Angewandte Chemie International Edition, 2021, 60(28): 15153-15164. |
4 | Lee A, Elam J W, Darling S B. Membrane materials for water purification: design, development, and application[J]. Environmental Science: Water Research & Technology, 2016, 2(1): 17-42. |
5 | Kosinov N, Gascon J, Kapteijn F, et al. Recent developments in zeolite membranes for gas separation[J]. Journal of Membrane Science, 2016, 499: 65-79. |
6 | Baker R W, Low B T. Gas separation membrane materials: a perspective[J]. Macromolecules, 2014, 47(20): 6999-7013. |
7 | Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
8 | Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
9 | Qian Y J, Shang J, Liu D, et al. Enhanced ion sieving of graphene oxide membranes via surface amine functionalization[J]. Journal of the American Chemical Society, 2021, 143(13): 5080-5090. |
10 | Zhang M C, Guan K C, Ji Y F, et al. Controllable ion transport by surface-charged graphene oxide membrane[J]. Nature Communications, 2019, 10: 1253. |
11 | Li G L, Qi Y M, Lin H B, et al. Ni-metal-organic-framework (Ni-MOF) membranes from multiply stacked nanosheets (MSNs) for efficient molecular sieve separation in aqueous and organic solvent[J] Journal of Membrane Science, 2021, 635(1): 119470. |
12 | Fan H W, Peng M H, Strauss I, et al. MOF-in-COF molecular sieving membrane for selective hydrogen separation[J]. Nature Communications, 2021, 12(1): 38. |
13 | Wang J, Zhang Z J, Zhu J N, et al. Ion sieving by a two-dimensional Ti3C2Tx alginate lamellar membrane with stable interlayer spacing[J]. Nature Communications, 2020, 11(1): 3540. |
14 | Ding L, Wei Y, Li L, et al. MXene molecular sieving membranes for highly efficient gas separation[J]. Nat. Commun., 2018, 9(1): 155. |
15 | Wan X Y, Wan T, Cao C C, et al. Accelerating CO2 transport through nanoconfined magnetic ionic liquid in laminated BN membrane[J]. Chemical Engineering Journal, 2021, 421 (1): 130309. |
16 | Chen C, Liu D, Wang J M, et al. Functionalized boron nitride membranes with multipurpose and super-stable semi-permeability in solvents[J]. Journal of Materials Chemistry A, 2018, 6(42): 21104-21109. |
17 | Wang S F, Yang L X, He G W, et al. Two-dimensional nanochannel membranes for molecular and ionic separations[J]. Chemical Society Reviews, 2020, 49: 1071-1089. |
18 | Zheng Z K, Grünker R, Feng X L. Synthetic two-dimensional materials: a new paradigm of membranes for ultimate separation[J]. Advanced Materials, 2016, 28(31): 6529-6545. |
19 | Zhu Q B, Xuan Y M, Zhang K, et al. Enhancing photocatalytic CO2 reduction performance of g-C3N4-based catalysts with non-noble plasmonic nanoparticles[J]. Applied Catalysis B: Environmental, 2021, 297: 120440. |
20 | Wang X Y, Meng J Q, Zhang X Y, et al. Controllable approach to carbon-deficient and oxygen-doped graphitic carbon nitride: robust photocatalyst against recalcitrant organic pollutants and the mechanism insight[J]. Advanced Functional Materials, 2021, 31(20): 2010763. |
21 | Zhang H J, Zheng D W, Cai Z, et al. Graphitic carbon nitride nanomaterials for multicolor light-emitting diodes and bioimaging[J]. ACS Applied Nano Materials, 2020, 3(7): 6798-6805. |
22 | Cai Z, Chen J R, Xing S S, et al. Highly fluorescent g-C3N4 nanobelts derived from bulk g-C3N4 for NO2 gas sensing[J]. Journal of Hazardous Materials, 2021, 416: 126195. |
23 | Chen J J, Mao Z Y, Zhang L X, et al. Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes[J]. ACS Nano, 2017, 11(12): 12650-12657. |
24 | Bai L Q, Huang H W, Zhang S G, et al. Photocatalysis-assisted Co3O4/g-C3N4 p-n junction all-solid-state supercapacitors: a bridge between energy storage and photocatalysis[J]. Advanced Science, 2020,7(22): 2001939. |
25 | Cao K T, Jiang Z Y, Zhang X S, et al. Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix[J]. Journal of Membrane Science, 2015, 490: 72-83. |
26 | Wang Y J, Li L B, Wei Y Y, et al. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers[J]. Angewandte Chemie, 2017, 129(31): 9102-9108. |
27 | Huang L, Li Y R, Zhou Q Q, et al. Graphene oxide membranes with tunable semipermeability in organic solvents[J]. Advanced Materials, 2015, 27(25): 3797-3802. |
28 | Liao G F, Gong Y, Zhang L, et al. Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light[J]. Energy & Environmental Science, 2019, 12(7): 2080-2147. |
29 | Tian Z Z, Wang S F, Wang Y T, et al. Enhanced gas separation performance of mixed matrix membranes from graphitic carbon nitride nanosheets and polymers of intrinsic microporosity[J]. Journal of Membrane Science, 2016, 514: 15-24. |
30 | Villalobos L F, Vahdat M T, Dakhchoune M, et al. Large-scale synthesis of crystalline g-C3N4 nanosheets and high-temperature H2 sieving from assembled films[J]. Science Advances, 2020, 6(4): eaay9851. |
31 | Wang J, Li M S, Zhou S Y, et al. Graphitic carbon nitride nanosheets embedded in poly(vinyl alcohol) nanocomposite membranes for ethanol dehydration via pervaporation[J]. Separation and Purification Technology, 2017, 188: 24-37. |
32 | Wang Y J, Liu L F, Xue J, et al. Enhanced water flux through graphitic carbon nitride nanosheets membrane by incorporating polyacrylic acid[J]. AIChE Journal, 2018, 64(6): 2181-2188. |
33 | Ran J, Pan T, Wu Y Y, et al. Endowing g-C3N4 membranes with superior permeability and stability by using acid spacers[J]. Angewandte Chemie, 2019, 131(46): 16615-16620. |
34 | Liebig J. Uber einige stickstoff - verbindungen[J]. Annalen Der Pharmacie, 1834, 10(1): 1-47. |
35 | Liu A Y, Cohen M L. Prediction of new low compressibility solids[J]. Science, 1989, 245(4920): 841-842. |
36 | Teter D M, Hemley R J. Low-compressibility carbon nitrides[J]. Science, 1996, 271(5245): 53-55. |
37 | Ong W J, Tan L L, Ng Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? [J]. Chemical Reviews, 2016, 116(12): 7159-7329. |
38 | Kroke E, Schwarz M, Horath-Bordon E, et al. Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures [J]. New Journal of Chemistry, 2002, 26: 508-512. |
39 | Ma X G, Lv Y, Xu J, et al. A strategy of enhancing the photoactivity of g-C3N4via doping of nonmetal elements: a first-principles study[J]. The Journal of Physical Chemistry C, 2012, 116(44): 23485-23493. |
40 | Thomas A, Fischer A, Goettmann F, et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts[J]. Journal of Materials Chemistry, 2008, 18(41): 4893. |
41 | Luo Y Q, Yan Y, Zheng S S, et al. Graphitic carbon nitride based materials for electrochemical energy storage[J]. Journal of Materials Chemistry A, 2019, 7(3): 901-924. |
42 | Hou Y, Wen Z H, Cui S M, et al. Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity[J]. Advanced Materials, 2013, 25(43): 6291-6297. |
43 | Wang Y, Wang X C, Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry[J]. Angewandte Chemie International Edition, 2012, 51(1): 68-89. |
44 | Cao Q, Kumru B, Antonietti M, et al. Graphitic carbon nitride and polymers: a mutual combination for advanced properties[J]. Materials Horizons, 2020, 7(3): 762-786. |
45 | Wang Y, Gao B Y, Yue Q Y, et al. Graphitic carbon nitride (g-C3N4)-based membranes for advanced separation[J]. Journal of Materials Chemistry A, 2020, 8: 19133-19155. |
46 | Niu P, Zhang L L, Liu G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Advanced Functional Materials, 2012, 22(22): 4763-4770. |
47 | Ott S, Lakmann M, Backes C, et al. Impact of pretreatment of the bulk starting material on the efficiency of liquid phase exfoliation of WS2[J]. Nanomaterials, 2021, 11(5): 1072. |
48 | Shi D, Yang M Z, Chang B, et al. Ultrasonic-ball milling: a novel strategy to prepare large-size ultrathin 2D materials[J]. Small, 2020, 16(13): 1906734. |
49 | Das R, Solís-Fernández P, Breite D, et al. High flux and adsorption based non-functionalized hexagonal boron nitride lamellar membrane for ultrafast water purification[J]. Chemical Engineering Journal, 2021, 420: 127721. |
50 | Sun G X, Bi J Q. Scalable production of boron nitride nanosheets in ionic liquids by shear-assisted thermal treatment[J]. Ceramics International, 2021, 47(6): 7776-7782. |
51 | Wang H L, Lv W Z, Shi J, et al. Efficient liquid nitrogen exfoliation of MoS2 ultrathin nanosheets in the pure 2H phase[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(1):84-90. |
52 | Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9): 563-568. |
53 | Coleman J N, Lotya M, O'Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571. |
54 | Zhang X, Xie X, Wang H, et al. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging[J]. Journal of the American Chemical Society, 2013, 135(1): 18-21. |
55 | Zhao H X, Yu H T, Quan X, et al. Atomic single layer graphitic-C3N4: fabrication and its high photocatalytic performance under visible light irradiation[J]. RSC Adv., 2014, 4(2): 624-628. |
56 | Kumar S, Surendar T, Kumar B, et al. Synthesis of highly efficient and recyclable visible-light responsive mesoporous g-C3N4 photocatalyst via facile template-free sonochemical route[J]. RSC Advances, 2014, 4(16): 8132. |
57 | Yu S Y, Webster R D, Zhou Y, et al. Ultrathin g-C3N4 nanosheets with hexagonal CuS nanoplates as a novel composite photocatalyst under solar light irradiation for H2 production[J]. Catalysis Science & Technology, 2017, 7(10): 2050-2056. |
58 | Ma L T, Fan H Q, Li M M, et al. A simple melamine-assisted exfoliation of polymeric graphitic carbon nitrides for highly efficient hydrogen production from water under visible light[J]. Journal of Materials Chemistry A, 2015, 3(44): 22404-22412. |
59 | She X J, Xu H, Xu Y G, et al. Exfoliated graphene-like carbon nitride in organic solvents: enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amounts of Cu2+[J]. Journal of Materials Chemistry A, 2014, 2(8): 2563. |
60 | Zhang J S, Chen Y, Wang X C. Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications[J]. Energy & Environmental Science, 2015, 8(11): 3092-3108. |
61 | Lin Q Y, Li L, Liang S J, et al. Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities[J]. Applied Catalysis B: Environmental, 2015, 163: 135-142. |
62 | Zhou K G, Mao N N, Wang H X, et al. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues[J]. Angewandte Chemie International Edition, 2011, 50(46): 10839-10842. |
63 | Han Q, Wang B, Gao J, et al. Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution[J]. ACS Nano, 2016, 10(2): 2745-2751. |
64 | Xu J, Zhang L W, Shi R, et al. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis[J]. Journal of Materials Chemistry A, 2013, 1(46): 14766. |
65 | Yin Y, Han J C, Zhang X H, et al. Facile synthesis of few-layer-thick carbon nitride nanosheets by liquid ammonia-assisted lithiation method and their photocatalytic redox properties[J]. RSC Adv., 2014, 4(62): 32690-32697. |
66 | Lu X L, Xu K, Chen P Z, et al. Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity[J]. J. Mater. Chem. A, 2014, 2(44): 18924-18928. |
67 | He F, Chen G, Yu Y G, et al. The sulfur-bubble template-mediated synthesis of uniform porous g-C3N4 with superior photocatalytic performance[J]. Chemical Communications, 2015, 51(2): 425-427. |
68 | Hong Y Z, Li C S, Fang Z Y, et al. Rational synthesis of ultrathin graphitic carbon nitride nanosheets for efficient photocatalytic hydrogen evolution[J]. Carbon, 2017, 121: 463-471. |
69 | Huang H W, Xiao K, Tian N, et al. Template-free precursor-surface-etching route to porous, thin g-C3N4 nanosheets for enhancing photocatalytic reduction and oxidation activity[J]. Journal of Materials Chemistry A, 2017, 5(33): 17452-17463. |
70 | Liu Q, Wang X L, Yang Q, et al. A novel route combined precursor-hydrothermal pretreatment with microwave heating for preparing holey g-C3N4 nanosheets with high crystalline quality and extended visible light absorption[J]. Applied Catalysis B: Environmental, 2018, 225: 22-29. |
71 | Xiao Y, Tian G, Li W, et al. Molecule self-assembly synthesis of porous few-layer carbon nitride for highly efficient photoredox catalysis[J]. Journal of the American Chemical Society, 2019, 141(6): 2508-2515. |
72 | Zhao C X, Chen Z P, Xu J S, et al. Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets[J]. Applied Catalysis B: Environmental, 2019, 256: 117867. |
73 | Lu Q J, Deng J H, Hou Y X, et al. One-step electrochemical synthesis of ultrathin graphitic carbon nitride nanosheets and their application to the detection of uric acid[J]. Chemical Communications, 2015, 51(61): 12251-12253. |
74 | Huang M H, Wang Z G, Jin J. Two-dimensional microporous material-based mixed matrix membranes for gas separation[J]. Chemistry—an Asian Journal, 2020, 15(15): 2303-2315. |
75 | Soto-Herranz M, Sánchez-Báscones M, Hérnandez-Giménez A, et al. Effects of protonation, hydroxylamination, and hydrazination of g-C3N4 on the performance of matrimid®/g-C3N4 membranes[J]. Nanomaterials, 2018, 8(12): 1010. |
76 | Ye W Y, Liu H W, Lin F, et al. High-flux nanofiltration membranes tailored by bio-inspired co-deposition of hydrophilic g-C3N4 nanosheets for enhanced selectivity towards organics and salts[J]. Environmental Science: Nano, 2019, 6(10): 2958-2967. |
77 | Li B R, Meng M J, Cui Y H, et al. Changing conventional blending photocatalytic membranes (BPMs): Focus on improving photocatalytic performance of Fe3O4/g-C3N4/PVDF membranes through magnetically induced freezing casting method[J]. Chemical Engineering Journal, 2019, 365: 405-414. |
78 | Marzi Khosrowshahi E, Matin A A. A monolithic graphitic carbon nitride/polyethersulfone nanocomposite: an application of a mixed matrix membrane as a solid-phase microextraction fiber[J]. Microchimica Acta, 2019, 186(10): 1-7. |
79 | Wu X L, Cui X L, Wang Q, et al. Manipulating the cross-layer channels in g-C3N4 nanosheet membranes for enhanced molecular transport[J]. Journal of Materials Chemistry A, 2021, 9(7): 4193-4202. |
80 | Huang J H, Hu J L, Shi Y H, et al. Evaluation of self-cleaning and photocatalytic properties of modified g-C3N4 based PVDF membranes driven by visible light[J]. Journal of Colloid and Interface Science, 2019, 541: 356-366. |
81 | Liu L F, Zhou Y S, Xue J, et al. Enhanced antipressure ability through graphene oxide membrane by intercalating g-C3N4 nanosheets for water purification[J]. AIChE Journal, 2019, 65(10): e16699. |
82 | Hou J M, Wei Y Y, Zhou S, et al. Highly efficient H2/CO2 separation via an ultrathin metal-organic framework membrane[J]. Chemical Engineering Science, 2018, 182: 180-188. |
83 | Li F, Qu Y Y, Zhao M W. Efficient helium separation of graphitic carbon nitride membrane[J]. Carbon, 2015, 95: 51-57. |
84 | Ji Y J, Dong H L, Lin H P, et al. Heptazine-based graphitic carbon nitride as an effective hydrogen purification membrane[J]. RSC Advances, 2016, 6(57): 52377-52383. |
85 | de Silva S W, Du A, Senadeera W, et al. Strained graphitic carbon nitride for hydrogen purification[J]. Journal of Membrane Science, 2017, 528: 201-205. |
86 | Zhou Y S, Zhang Y, Xue J, et al. Graphene oxide-modified g-C3N4 nanosheet membranes for efficient hydrogen purification[J]. Chemical Engineering Journal, 2021, 420: 129574. |
87 | Wang J, Li M S, Zhou S Y, et al. Controllable construction of polymer/inorganic interface for poly (vinyl alcohol)/graphitic carbon nitride hybrid pervaporation membranes[J]. Chemical Engineering Science, 2018, 181: 237-250. |
88 | Ding H, Pan F S, Mulalic E, et al. Enhanced desulfurization performance and stability of Pebax membrane by incorporating Cu+ and Fe2+ ions co-impregnated carbon nitride[J]. Journal of Membrane Science, 2017, 526: 94-105. |
89 | Foglia F, Clancy A J, Berry-Gair J, et al. Aquaporin-like water transport in nanoporous crystalline layered carbon nitride[J]. Science Advances, 2020, 6(39): eabb6011. |
90 | Wang Y, Wu N N, Wang Y, et al. Graphite phase carbon nitride based membrane for selective permeation[J]. Nature Communications, 2019, 10: 2500. |
91 | Gao X, Li Y M, Yang X L, et al. Highly permeable and antifouling reverse osmosis membranes with acidified graphitic carbon nitride nanosheets as nanofillers[J]. Journal of Materials Chemistry A, 2017, 5(37): 19875-19883. |
92 | Liu Y C, Cheng Z W, Song M R, et al. Molecular dynamics simulation-directed rational design of nanoporous graphitic carbon nitride membranes for water desalination[J]. Journal of Membrane Science, 2021, 620: 118869. |
93 | Wu Y Y, Fu C F, Huang Q, et al. 2D heterostructured nanofluidic channels for enhanced desalination performance of graphene oxide membranes[J]. ACS Nano, 2021, 15(4): 7586-7595. |
94 | Bi Q Y, Zhang C, Liu J D, et al. A nanofiltration membrane prepared by PDA-C3N4 for removal of divalent ions[J]. Water Science and Technology, 2020, 81(2): 253-264. |
95 | Xu C W, Shao F F, Yi Z, et al. Highly chlorine resistance polyamide reverse osmosis membranes with oxidized graphitic carbon nitride by ontology doping method[J]. Separation and Purification Technology, 2019, 223: 178-185. |
96 | Chen J X, Li Z Y, Wang C B, et al. Synthesis and characterization of g-C3N4 nanosheet modified polyamide nanofiltration membranes with good permeation and antifouling properties[J]. RSC Advances, 2016, 6(113): 112148-112157. |
97 | Shahabi S S, Azizi N, Vatanpour V, et al. Novel functionalized graphitic carbon nitride incorporated thin film nanocomposite membranes for high-performance reverse osmosis desalination[J]. Separation and Purification Technology, 2020, 235: 116134. |
98 | Li R, Ren Y L, Zhao P X, et al. Graphitic carbon nitride (g-C3N4) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance[J]. Journal of Hazardous Materials, 2019, 365: 606-614. |
99 | Dong L J, Liao Q, Wu C L, et al. The microscopic insights into the adsorption of Cu2+, Pb2+and Zn2+onto g-C3N4 surfaces by a combined spectroscopic characterization and DFT theoretical calculations[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105433. |
100 | Xie H T, Zhang J N, Wang D, et al. Construction of three-dimensional g-C3N4/attapulgite hybrids for Cd(II) adsorption and the reutilization of waste adsorbent[J]. Applied Surface Science, 2020, 504: 144456. |
101 | Zhou K G, McManus D, Prestat E, et al. Self-catalytic membrane photo-reactor made of carbon nitride nanosheets[J]. Journal of Materials Chemistry A, 2016, 4(30): 11666-11671. |
102 | Xiao K, Giusto P, Wen L P, et al. Nanofluidic ion transport and energy conversion through ultrathin free-standing polymeric carbon nitride membranes[J]. Angewandte Chemie, 2018, 130(32): 10280-10283. |
[1] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[2] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[3] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[4] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[5] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[6] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[7] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[8] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[9] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[10] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[11] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[12] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[13] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[14] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
[15] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||