1 |
Intergovernmental Panel on Climate Change (IPCC). Special report on carbon dioxide capture and storage[R]. Geneva: Cambridge University Press, 2015.
|
2 |
Energy Information Administration U.S.. How much of U.S. carbon dioxide emissions are associated with electricity generation [EB/OL]. [2020-09-25]. .
|
3 |
IEA. 20 years of carbon capture and storage[R]. OECD/IEA, Paris, 2016.
|
4 |
Karl S. Start-up of world's first commercial post-combustion coal fired CCS project: contribution of shell cansolv to SaskPower boundary dam ICCS project [J]. Energy Procedia, 2014, 63: 6106-6110.
|
5 |
Petra Nova NRG. Carbon capture and the future of coal power[EB/OL]. [2020-03-11]. .
|
6 |
Davison J. Performance and costs of power plants with capture and storage of CO2[J]. Energy, 2007, 32(7): 1163-1176.
|
7 |
Al-Juaied M A, Whitmore A. Realistic costs of carbon capture[R]. Belfer Center for Science and International Affairs, 2009.
|
8 |
Zhang X P, Singh B, He X Z, et al. Post-combustion carbon capture technologies: energetic analysis and life cycle assessment[J]. Int. J. Greenh. Gas Control, 2014, 27: 289-298.
|
9 |
陈健, 罗伟亮, 李晗.有机胺吸收二氧化碳的热力学和动力学研究进展[J]. 化工学报, 2014, 65(1): 12-21.
|
|
Chen J, Luo W L, Li H. A review for research on thermodynamics and kinetics of carbon dioxide absorption with organic amines[J]. CIESC Journal, 2014, 65(1): 12-21.
|
10 |
Zhou X B, Jing G H, Lv B H, et al. Low-viscosity and efficient regeneration of carbon dioxide capture using a biphasic solvent regulated by 2-amino-2-methyl-1-propanol[J]. Applied Energy, 2019, 235: 379-390.
|
11 |
Convay W, Bruggink S, Beyad Y, et al. CO2 absorption into aqueous amine blended solutions containing monoethanolamine (MEA), N,N-dimethylethanolamine (DMEA), N,N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) for post-combustion capture processes[J]. Chem. Eng. Sci., 2015, 126: 446-454.
|
12 |
许咪咪, 王淑娟.液-液相变溶剂捕集CO2技术研究进展[J]. 化工学报, 2018, 69(5): 1809-1818.
|
|
Xu M M, Wang S J. Research progress in CO2 capture technology using liquid-liquid biphasic solvents[J]. CIESC Journal, 2018, 69(5): 1809-1818.
|
13 |
崔国凯, 吕书贞, 王键吉. 功能化离子液体在二氧化碳吸收分离中的应用[J]. 化工学报, 2020, 71(1): 16-25.
|
|
Cui G K, Lyu S Z, Wang J J. Functional ionic liquids for carbon dioxide capture and separation[J]. CIESC Journal, 2020, 71(1): 16-25.
|
14 |
李小飞, 王淑娟, 陈昌和. 胺法脱碳系统流程改进及优化模拟[J]. 化工学报, 2013, 64(10): 3750-3759.
|
|
Li X F, Wang S J, Chen C H. Modification of process and optimization for CO2 capture systems using amine solution[J]. CIESC Journal, 2013, 64(10): 3750-3759.
|
15 |
Li K K, Cousins A, Yu H, et al. Systematic study of aqueous monoethanolamine-based CO2 capture process: model development and process improvement[J]. Energy Sci. & Eng., 2016, 4(1): 23-39.
|
16 |
Feng B, Du M, Dennis T J, et al. Reduction of energy requirement of CO2 desorption by adding acid into CO2-loaded solvent[J]. Energy & Fuels, 2010, 24(1): 213-219.
|
17 |
Zhang X, Liu H L, Liang Z W, et al. Reducing energy consumption of CO2 desorption in CO2-loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts[J]. Appl. Energy, 2018, 229: 562-576.
|
18 |
Zhang X, Zhang X, Liu H, et al. Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts[J]. Applied Energy, 2017, 202: 673-684.
|
19 |
Lai Q, Toan S, Assiri M A, et al. Catalyst-TiO(OH)2 could drastically reduce the energy consumption of CO2 capture[J]. Nature Communications, 2018, 9(1): 2672.
|
20 |
Bhatti U H, Sivanesan D, Lim D H, et al. Metal oxide catalyst-aided solvent regeneration: a promising method to economize post-combustion CO2 capture process[J]. J. Taiwan Inst. Chem. Eng., 2018, 93: 150-157.
|
21 |
Li K K, Yu H, Tade M, et al. Theoretical and experimental study of NH3 suppression by addition of Me(II) ions (Ni, Cu and Zn) in an ammonia-based CO2 capture process[J]. Int. J. Greenh. Gas Control, 2014, 24: 54-63.
|
22 |
Cheng C H, Li, K K, Yu H, et al. Amine-based post-combustion CO2 capture mediated by metal ions: advancement of CO2 desorption using copper ions[J]. Appl. Energy, 2018, 211: 1030-1038.
|
23 |
Li K K, van der Poel P, Conway W, et al. Mechanism investigation of advanced metal-ion-mediated amine regeneration: a novel pathway to reducing CO2 reaction enthalpy in amine-based CO2 capture[J]. Environ. Sci. & Tech., 2018, 52(24): 14538-14546.
|
24 |
Blachly C H, Ravner H. The Effect of trance amount of copper on the stability of monoethanolamine scrubber solutions [R]. Naval Research Lab Washington DC, 1963.
|
25 |
Sexton A J, Rochelle G T. Catalysts and inhibitors for oxidative degradation of monoethanolamine[J]. Int. J. Greenh. Gas Control, 2009, 3: 704-711.
|
26 |
Voice A. Amine oxidation in carbon dioxide capture by aqueous scrubbing[ D]. Austin: The University of Texas, 2013.
|
27 |
Consulting Jplus. ReactLab EQUILIBRIA[EB/OL]. [2020-03-11]. .
|
28 |
Edwards T, Maurer G, Newman J, et al. Vapor‐liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes[J]. AIChE J., 1978, 24(6): 966-976.
|
29 |
Puxty G, Maeder M. A simple chemical model to represent CO2-amine-H2O vapour-liquid-equilibria[J]. Int. J. Greenh. Gas Control, 2013, 17: 215-224.
|
30 |
IUPAC. Stability Constants Database [EB/OL]. [2020-03-11]. .
|
31 |
National Institute of Standards and Technology (NIST) Data Gateway[EB/OL]. [2020-03-11]. .
|
32 |
Luo W L, Yang Q, Conway W, et al. Evaluation and modeling of vapor-liquid equilibrium and CO2 absorption enthalpies of aqueous designer diamines for post combustion capture processes[J]. Environ. Sci. Technol., 2017, 51: 7169-7177.
|
33 |
Svensson H, Hulteberg C, Karlsson H T. Heat of absorption of CO2 in aqueous solutions of N-methyldiethanolamine and piperazine[J]. Int. J. Greenh. Gas Control, 2013, 17: 89-98.
|
34 |
Maneeintr K, Idem R O, Tontiwachwuthikul P, et al. Synthesis, solubilities, and cyclic capacities of amino alcohols for CO2 capture from flue gas streams[J]. Energy Procedia, 2009, 1(1): 1327-1334.
|
35 |
Luo W L, Guo D F, Zheng J H, et al. CO2 absorption using biphasic solvent: blends of diethylenetriamine, sulfolane, and water[J]. Int. J. Greenh. Gas Control, 2016, 53: 141-148.
|