CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1692-1701.DOI: 10.11949/0438-1157.20200769
• Energy and environmental engineering • Previous Articles Next Articles
LI Chaofan1(),WEN Yujuan1(),CAO Nan3,SUN Dong3,SONG Xiaoming1,YANG Yuesuo1,2
Received:
2020-06-18
Revised:
2020-10-05
Online:
2021-03-05
Published:
2021-03-05
Contact:
WEN Yujuan
李超凡1(),温玉娟1(),曹楠3,孙东3,宋晓明1,杨悦锁1,2
通讯作者:
温玉娟
作者简介:
李超凡(1995—),女,硕士研究生,基金资助:
CLC Number:
LI Chaofan, WEN Yujuan, CAO Nan, SUN Dong, SONG Xiaoming, YANG Yuesuo. Biodegradation kinetics of p-nitrophenol at low-temperature[J]. CIESC Journal, 2021, 72(3): 1692-1701.
李超凡, 温玉娟, 曹楠, 孙东, 宋晓明, 杨悦锁. 耐低温对硝基苯酚降解菌的降解动力学研究[J]. 化工学报, 2021, 72(3): 1692-1701.
Add to citation manager EndNote|Ris|BibTeX
拟合模型 | 模型拟合参数 | ||||
---|---|---|---|---|---|
μmax / h-1 | Ks/ (mg·L-1) | Ki/ (mg·L-1) | K/(mg·L-1) | R2 | |
Haldane model | 0.250 | 5.74 | 73.92 | — | 0.961 |
Aiba model | 0.205 | 3.40 | 166.86 | — | 0.988 |
Yano model | 2015.754 | 130072.42 | 0.004 | -513.900 | 0.634 |
Webb model | 0.250 | 5.74 | 73.91 | 1.2953×1025 | 0.956 |
Table 1 Kinetic parameters of degradation of p-nitrophenol by ZL strain fitted by different models
拟合模型 | 模型拟合参数 | ||||
---|---|---|---|---|---|
μmax / h-1 | Ks/ (mg·L-1) | Ki/ (mg·L-1) | K/(mg·L-1) | R2 | |
Haldane model | 0.250 | 5.74 | 73.92 | — | 0.961 |
Aiba model | 0.205 | 3.40 | 166.86 | — | 0.988 |
Yano model | 2015.754 | 130072.42 | 0.004 | -513.900 | 0.634 |
Webb model | 0.250 | 5.74 | 73.91 | 1.2953×1025 | 0.956 |
对硝基苯酚降解菌株 | 温度/℃ | 拟合模型 | 模型参数 | 文献 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
μmax / h-1 | Ks/ (mg·L-1) | Ki/ (mg·L-1) | K/ (mg·L-1) | μmax/Ks | Ks/Ki | R2 | ||||
Arthrobacter chlorophenolicus A6 | 30 | Webb model | 0.161 | 128 | 60.15 | 100 | 0.0013 | 2.1280 | 0.97 | [ |
Ralstonia eutropha | 30 | Haldane model | 0.001 | 8.83 | 30.77 | — | 0.0001 | 0.2870 | 0.96 | [ |
acclimated activated sludge | 30 | Haldane model | 0.135 | 110.3 | 63.58 | — | 0.0012 | 1.7348 | 0.976 | [ |
Pseudomonas sp. PRM | 30 | Haldane model | 0.477 | 247.22 | 247.24 | — | 0.0019 | 0.9999 | 0.96 | [ |
Pseudomonas sp. ZL | 10 | Aiba model | 0.205 | 3.40 | 166.86 | — | 0.0603 | 0.0204 | 0.988 | 本文 |
Table 2 Degradation kinetic model parameters of different p-nitrophenol degrading bacteria
对硝基苯酚降解菌株 | 温度/℃ | 拟合模型 | 模型参数 | 文献 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
μmax / h-1 | Ks/ (mg·L-1) | Ki/ (mg·L-1) | K/ (mg·L-1) | μmax/Ks | Ks/Ki | R2 | ||||
Arthrobacter chlorophenolicus A6 | 30 | Webb model | 0.161 | 128 | 60.15 | 100 | 0.0013 | 2.1280 | 0.97 | [ |
Ralstonia eutropha | 30 | Haldane model | 0.001 | 8.83 | 30.77 | — | 0.0001 | 0.2870 | 0.96 | [ |
acclimated activated sludge | 30 | Haldane model | 0.135 | 110.3 | 63.58 | — | 0.0012 | 1.7348 | 0.976 | [ |
Pseudomonas sp. PRM | 30 | Haldane model | 0.477 | 247.22 | 247.24 | — | 0.0019 | 0.9999 | 0.96 | [ |
Pseudomonas sp. ZL | 10 | Aiba model | 0.205 | 3.40 | 166.86 | — | 0.0603 | 0.0204 | 0.988 | 本文 |
1 | 张茜, 温玉娟, 杨悦锁, 等.土壤含水层处理系统去除对硝基酚[J].化工学报, 2015, 66(4): 1440-1448. |
Zhang Q, Wen Y J, Yang Y S, et al. p-Nitrophenol removal using soil aquifer treatment system[J].CIESC Journal, 2015, 66(4): 1440-1448. | |
2 | 刘丹, 刘济宁, 吴晟旻, 等. 太湖水体中对硝基苯酚的分布特征及风险评价[J]. 中国环境科学, 2017, 37(2): 761-767. |
Liu D, Liu J N, Wu S M, et al. Distribution and ecological risk assessment of p-nitrophenol in Taihu Lake and its tributaries[J].China Environmental Science, 2017, 37(2): 761-767. | |
3 | 张再峰, 沈志群, 陆亮. 在线富集固相萃取-超高效液相色谱串联质谱法测定地表水中PNP[J]. 环境监控与预警, 2019, 11(2): 31-33. |
Zhang Z F, Shen Z Q, Lu L. Determination of p-nitrophenol in surface water by on-line enrichment solid-phase extraction and ultra high performance liquid chromatography tandem mass spectrometry[J]. Environmental Monitoring and Forewarning, 2019, 11(2): 31-33. | |
4 | 温玉娟, 杨悦锁, 宋晓明, 等. 氧化铁砂SAT去除对硝基苯酚的吸附行为及性能研究[J]. 化工学报, 2018, 69(7): 3059-3067. |
Wen Y J, Yang Y S, Song X M, et al. Characteristics of p-nitrophenol removal by SAT system with iron oxide coated sands[J]. CIESC Journal, 2018, 69(7): 3059-3067. | |
5 | 马锋锋, 赵保卫, 刁静茹, 等. 磁性生物炭对水体中对硝基苯酚的吸附特性[J]. 中国环境科学, 2019, 39(1): 172-180. |
Ma F F, Zhao B W, Diao J R, et al. Adsorption characteristics of p-nitrophenol removal by magnetic biochar[J]. China Environmental Science, 2019, 39(1): 172-180. | |
6 | 马锋锋, 赵保卫. 不同热解温度制备的玉米芯生物炭对对硝基苯酚的吸附作用[J]. 环境科学, 2017, 38(2): 837-844. |
Ma F F, Zhao B W. Sorption of p-nitrophenol by biochars of corncob prepared at different pyrolysis temperatures[J]. Environmental Science, 2017, 38(2): 837-844. | |
7 | Huang T, Fu Y, Peng Q, et al. Catalytic hydrogenation of p-nitrophenol using a metal-free catalyst of porous crimped graphitic carbon nitride[J]. Applied Surface Science, 2019, 480: 888-895. |
8 | Singh K, Kukkar D, Singh R P, et al. In situ green synthesis of Au/Ag nanostructures on a metal-organic framework surface for photocatalytic reduction of p-nitrophenol[J]. Journal of Industrial and Engineering Chemistry, 2020, 81: 196-205. |
9 | Kulkarni M, Chaudhari A. Biodegradation of p-nitrophenol by P. putida[J]. Bioresource Technology, 2006, 97(8): 982-988. |
10 | Lei Y, Mulchandani A, Chen W. Improved degradation of organophosphorus nerve agents and p-nitrophenol by Pseudomonas putida JS444 with surface-expressed organophosphorus hydrolase[J]. Biotechnology Progress, 2010, 21(3): 678-681. |
11 | Mattozzi M D L P, Keasling J D. Rationally engineered biotransformation of p-nitrophenol[J]. Biotechnology Progress, 2010, 26(3): 616-621. |
12 | Chen Z, Niu Y, Zhao S, et al. A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell[J]. Biosensors & Bioelectronics, 2016, 85: 860-868. |
13 | Zhang J, Sun Z, Li Y, et al. Biodegradation of p-nitrophenol by Rhodococcus sp. CN6 with high cell surface hydrophobicity[J]. Journal of Hazardous Materials, 2009, 163(2/3): 723-728. |
14 | Subashchandrabose S R, Venkateswarlu K, Krishnan K, et al. Rhodococcus wratislaviensis strain 9: an efficient p-nitrophenol degrader with a great potential for bioremediation[J]. Journal of Hazardous Materials, 2018, 347: 176-183. |
15 | Zhao H, Kong C. Enhanced removal of p-nitrophenol in a microbial fuel cell after long-term operation and the catabolic versatility of its microbial community[J]. Chemical Engineering Journal, 2018, 339: 424-431. |
16 | Labana S, Singh O V, Basu A, et al. A microcosm study on bioremediation of p-nitrophenol-contaminated soil using Arthrobacter protophormiae RKJ100[J]. Applied Microbiology and Biotechnology, 2005, 68(3): 417-424. |
17 | Zohar S, Kviatkovski I, Masaphy S. Increasing tolerance to and degradation of high p-nitrophenol concentrations by inoculum size manipulations of Arthrobacter 4Hβ isolated from agricultural soil[J]. International Biodeterioration & Biodegradation, 2013, 84: 80-85. |
18 | Yue W, Chen M, Cheng Z, et al. Bioaugmentation of strain, Methylobacterium sp. C1 towards, p-nitrophenol removal with broad spectrum coaggregating bacteria in sequencing batch biofilm reactors[J]. Journal of Hazardous Materials, 2018, 344: 431-440. |
19 | 孙慧敏, 白红娟, 张晴. 球形红细菌降解对硝基酚特性及响应面优化[J]. 含能材料, 2019, 27(7): 542-549. |
Sun H M, Bai H J, Zhang Q. Degradation of p-nitrophenol by Rhodobacter spheroides and optimization of response surface methodology[J]. Chinese Journal of Energetic Materials, 2019, 27(7): 542-549. | |
20 | 吴涵, 陈滢, 刘敏, 等. SBBR反应器中耐冷微生物的驯化与识别[J]. 化工学报, 2020, 71(2): 766-776. |
Wu H, Chen Y, Liu M, et al. Domestication and identification of cold-resistant bacteria in SBBR reactor[J]. CIESC Journal, 2020, 71(2): 766-776. | |
21 | Margesin R, Schinner F. Biodegradation and bioremediation of hydrocarbons in extreme environments[J]. Applied Microbiology and Biotechnology, 2001, 56: 650-663. |
22 | Xu Z Z, Ben Y, Chen, Z L, et al. Application and microbial ecology of psychrotrophs in domestic wastewater treatment at low temperature[J]. Chemosphere, 2018, 191: 946-953. |
23 | Cavicchioli R. On the concept of a psychrophile[J]. The ISME Journal, 2016, 10: 793-795. |
24 | Kasana R C. Proteases from psychrotrophs: an overview[J]. Critical Reviews in Microbiology, 2010, 36(2): 134-145. |
25 | Zhang X, Yang Y, Lu Y, et al. Bioaugmented soil aquifer treatment for p-nitrophenol removal in wastewater unique for cold regions[J]. Water Research, 2018, 144: 616-627. |
26 | Sahoo N K, Pakshirajan K, Ghosh P K. Batch biodegradation of para-nitrophenol using Arthrobacter chlorophenolicus A6[J]. Applied Biochemistry & Biotechnology, 2011, 165(7/8): 1587-1596. |
27 | Maleki M, Motamedi M, Sedighi M, et al. Experimental study and kinetic modeling of cometabolic degradation of phenol and p-nitrophenol by loofa-immobilized Ralstonia eutropha[J]. Biotechnology and Bioprocess Engineering, 2015, 20(1): 124-130. |
28 | Peng S S, Ng S L, Rohana A. Kinetics of biodegradation of phenol and p-nitrophenol by acclimated activated sludge[J]. Journal of Physical Science, 2018, 29: 107-113. |
29 | 温玉娟. 再生水中硝基芳香族有机物污染的SAT及其生物强化修复机理研究[D]. 长春: 吉林大学, 2016. |
Wen Y J. Removal mechanisms of para-nitrophenol in reclaimed water using SAT and its bio-enhancement[D]. Changchun: Jilin University, 2016. | |
30 | 王聪. 植物促生菌Pseudomonas monteilii PN1对对硝基酚降解及其联合苜蓿对污染土壤的修复[D]. 长春: 吉林大学, 2016. |
Wang C. Plant growth-promoting rhizobacteria Pseudomonas monteilii PN1 on PNP-degrading and bioremidation of contaminated soil with clovers[D]. Changchun: Jilin University, 2016. | |
31 | 张明露, 马挺, 李国强, 等. 一株耐热石油烃降解菌的细胞疏水性及乳化、润湿作用研究[J]. 微生物学通报, 2008, (9): 1348-1352. |
Zhang M L, Ma T, Li G Q, et al. Cell-surface hydrophobicity, emulsification and wetting property of a high temperature hydrocarbon-degrading strain[J]. Microbiology China, 2008, (9): 1348-1352. | |
32 | Murshid S, Dhakshinamoorthy G P. Biodegradation of sodium diclofenac and mefenamic acid: kinetic studies, identification of metabolites and analysis of enzyme activity[J]. International Biodeterioration & Biodegradation, 2019, 144: 104756. |
33 | Zhao H Y, Zhu J Y, Liu S N, et al. Kinetics study of nicosulfuron degradation by a Pseudomonas nitroreducens strain NSA02[J]. Biodegradation, 2018, 29(3): 271-283. |
34 | Bera S, Kauser H, Mohanty K, et al. Optimization of p-cresol biodegradation using novel bacterial strains isolated from petroleum hydrocarbon fallout[J]. Journal of Water Process Engineering, 2019, 31: 100842. |
35 | 张晓敏, 成卓韦, 於建明, 等. 真/细菌对疏水性有机物的吸附及其表面特性[J]. 中国环境科学, 2019, 39(3): 1268-1277. |
Zhang X M, Cheng Z W, Yu J M, et al. Absorption of different VOCs by fungus and bacterium and analysis of cell surface[J]. China Environmental Science, 2019, 39(3): 1268-1277. | |
36 | Farrell A, Quilty B. Substrate-dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenol[J]. Journal of Industrial Microbiology and Biotechnology, 2002, 28(6): 316-324. |
37 | 赵晴, 张甲耀, 陈兰洲, 等. 疏水性石油烃降解菌细胞表面疏水性及降解特性[J]. 环境科学, 2005, (5): 132-136. |
Zhao Q, Zhang J Y, Chen L Z, et al. Cell-surface hydrophobicity and degradation characteristics of hydrophobic hydrocarbon degrading bacteria [J]. Environmental Science, 2005, (5): 132-136. | |
38 | van Rantwijk F, Sheldon R A. Enantioselective acylation of chiral amines catalysed by serine hydrolases[J].Tetrahedron, 2004, 3(60): 501-519. |
39 | 孙兆海, 毛丽, 冯政, 等. 腐殖酸对土壤吸附四溴双酚A的影响[J]. 中国环境科学, 2008, (8): 748-752. |
Sun Z H, Mao L, Feng Z, et al. Effects of humic acid on sorption of tetrabromobisphenol A by soils[J]. China Environmental Science, 2008, (8): 748-752. | |
40 | 李容榛, 李成, 赵暹, 等. 一株高效邻苯二甲酸二丁酯降解菌的筛选、鉴定及其降解特性研究[J]. 环境化学, 2019, 38(10): 2274-2282. |
Li R Z, Li C, Zhao X, et al. Isolation and identification of a highly efficient DBP degrading bacteria and its degradation characteristics[J]. Environmental Chemistry, 2019, 38(10): 2274-2282. | |
41 | 陈孟立, 曾全超, 黄懿梅, 等. 黄土丘陵区退耕还林还草对土壤细菌群落结构的影响[J]. 环境科学, 2018, 39(4): 1824-1832. |
Chen M L, Zeng Q C, Huang Y M, et al. Effects of the farmland-to-forest/grassland conversion program on the soil bacterial community in the loess hilly region[J]. Environmental Science, 2018, 39(4): 1824-1832. | |
42 | 张玉秀, 豆梦楠, 朱康兴, 等. 喹啉降解菌Rhodococcus sp.的降解特性与生物强化作用[J]. 中国环境科学, 2017, 37(6): 2340-2346. |
Zhang Y X, Dou M N, Zhu K X, et al. Bioaugmentation and characteristics of a quinoline-degrading strain Rhodococcus sp.[J]. China Environmental Science, 2017, 37(6): 2340-2346. | |
43 | 母显杰, 丁舒心, 许继飞, 等. 耐盐苯酚降解菌Staphylococcus sp. 的分离及降解特性[J]. 环境化学, 2020, 39(7): 1-11. |
Mu X J, Ding S X, Xu J F, et al. Isolation and biodegradation characteristics of a halophilic phenol-degrading strain Staphylococcus sp.[J]. Environmental Chemistry, 2020, 39(7): 1-11. |
[1] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[2] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[3] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[4] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[5] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[6] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[7] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
[8] | Yujun MA, Xiangjun LIU. Theoretical studies of water recovery from flue gas by using ceramic membrane [J]. CIESC Journal, 2022, 73(9): 4103-4112. |
[9] | Huan ZHOU, Mengli ZHANG, Qing HAO, Si WU, Jie LI, Cunbing XU. Process mechanism and dynamic behaviors of magnesium sulfate type carnallite converting into kainite [J]. CIESC Journal, 2022, 73(9): 3841-3850. |
[10] | Wenxiang LI, Junhe WANG, Yijing HAO, Leping ZHOU. Experimental study on the effect of initial quenching temperature on the boiling heat transfer characteristics of hydrophobic surfaces [J]. CIESC Journal, 2022, 73(12): 5394-5404. |
[11] | Qianshi SONG, Xiaowei WANG, Wei ZHANG, Xiaohan WANG, Haowen LI, Yu QIAO. Catalytic/inhibitory effects of inorganic elements on biomass char-CO2 gasification reactivity and model construction [J]. CIESC Journal, 2022, 73(11): 5240-5250. |
[12] | Zhenlin ZHU, Songlin WANG, Bingxue JIANG, Jiaxu LI, Wei DENG, Haiqiang WU, Xuan YANG, Pingwei LIU, Wenjun WANG. Study on biodegradation of polyesters and their evaluation methods [J]. CIESC Journal, 2022, 73(1): 110-121. |
[13] | ZHANG Muxing, ZHANG Xiaosong, DING Ye, SONG Yi. Molecular dynamics study on influence of interlayer spacing of nanoporous graphene oxide membrane on electrodialysis based air dehumidification [J]. CIESC Journal, 2021, 72(S1): 63-69. |
[14] | ZHANG Mengfei, ZHANG Ling, LI Xiaochuang, ZU Yunqiu, HUANG Ming, SHI Xianzhang, LIU Chuntai. Simulation and experimental study on non-isothermal vulcanization process of thick-walled rubber products [J]. CIESC Journal, 2021, 72(4): 2065-2075. |
[15] | MAO Taoyan, ZOU Minting, ZHENG Cheng, ZENG Zhaowen, WU Xuxian, XIAO Runhui, PENG Siyu. A kinetics model of dimensionless criterion for microwave chemical reaction:a case study of the decomposition reaction of AIBA hydrochloride [J]. CIESC Journal, 2021, 72(3): 1364-1371. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||