1 |
Ding C, Zhang Y, Liu F, et al. Recombination suppression in PbS quantum dot heterojunction solar cells by energy-level alignment in the quantum dot active layers[J]. ACS Applied Materials & Interfaces, 2017, 10(31): 26142-26152.
|
2 |
Lv Y R, Huo R, Yang S Y, et al. Self-assembled synthesis of PbS quantum dots supported on polydopamine encapsulated BiVO4 for enhanced visible-light-driven photocatalysis[J]. Separation and Purification Technology, 2018, 197: 281-288.
|
3 |
Lu K, Wang Y, Liu Z, et al. High-effciency PbS quantum-dot solar cells with greatly simplifed fabrication processing via "solvent-curing"[J]. Advanced Materials, 2018, 30(25): e1707572.
|
4 |
Jin Z, Wang A, Zhou Q, et al. Detecting trap states in planar PbS colloidal quantum dot solar cells[J]. Scientific Reports, 2016, 7(1): 39725.
|
5 |
Shi X F, Xia X Y, Cui G W, et al. Multiple exciton generation application of PbS quantum dots in ZnO@PbS/graphene oxide for enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental, 2015, 163: 123-128.
|
6 |
Aqoma H, Mubarok M A, Hadmojo W T, et al. High-efficiency photovoltaic devices using trap-controlled quantum-dot ink prepared via phase-transfer exchange[J]. Advanced Matererials, 2017, 29(19): 1605756.
|
7 |
Stavrinadis A, Pradhan S, Papagiorgis P, et al. Suppressing deep traps in PbS colloidal quantum dots via facile iodide substitutional doping for solar cells with efficiency >10%[J]. ACS Energy Letters, 2017, 2(4): 739-744.
|
8 |
Liu M, Voznyy O, Sabatini R, et al. Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids[J]. Nature Materials, 2017, 16(2): 258-263.
|
9 |
Xu J, Voznyu O, Liu M, et al. 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids[J]. Nature Nanotechnology, 2018, 13(6): 456-462.
|
10 |
Park D, Azmi R, Cho Y, et al. Improved passivation of PbS quantum dots for solar cells using triethylamine hydroiodide[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10784-10791.
|
11 |
Yao X, Song Z, Mi L, et al. Improved stability of depletion heterojunction solar cells employing cationexchange PbS quantum dots[J]. Solar Energy Materials and Solar Cells, 2018, 187: 199-206.
|
12 |
Maity S, Sahu P P. Efficient Si-ZnO-ZnMgO heterojunction solar cell with alignment of grown hexagonal nanopillar[J]. Thin Solid Films, 2019, 674: 107-111.
|
13 |
Eisner F, Seitkhan A, Han Y, et al. Solution-processed In2O3/ZnO heterojunction electron transport layers for efficient organic bulk heterojunction and inorganic colloidal quantum-dot solar cells[J]. Solar RRL, 2018, 2(7): 1800076.
|
14 |
刘春波, 张实, 王龙, 等. 缓冲层在有机太阳能电池中的应用[J]. 化工进展, 2012, 31(2): 310-315.
|
|
Liu C B, Zhang S, Wang L, et al. Applications of buffer layers in organic solar cells[J]. Chemical Industry and Engineering Progree, 2012, 31(2 ): 310-315.
|
15 |
陈超, 杨修春, 刘巍. 有机-无机杂化钙钛矿太阳能电池的研究进展[J]. 化工学报, 2017, 68(3): 811-820.
|
|
Chen C, Yang X C, Liu W. Research progress of hybrid organic-inorganic perovskite solar cells[J]. CIESC Journal, 2017, 68(3): 811-820.
|
16 |
Dagher S, Haik Y, Tit N, et al. PbS/CdS heterojunction quantum dot solar cells[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(4): 3328-3340.
|
17 |
Yang F, Xu Y, Gu M, et al. Synthesis of cesium-doped ZnO nanoparticles as an electron extraction layer for efficient PbS colloidal quantum dot solar cells[J]. Journal of Materials Chemistry A, 2018, 6(36): 17688-17697.
|
18 |
Hu L, Zhang Z, Patterson R J, et al. Achieving high-performance PbS quantum dot solar cells by improving hole extraction through Ag doping[J]. Nano Energy, 2018, 46: 212-219.
|
19 |
Cademartiri L, Montanari E, Calestani G, et al. Size-dependent extinction coefficients of PbS quantum dots[J]. Journal of the American Chemical Society, 2006, 128(31): 10337-10346.
|
20 |
Ding C, Zhang Y, Liu F, et al. Understanding charge transfer and recombination by interface engineering for improving the efficiency of PbS quantum dot heterojunction solar cells[J]. Nanoscale Horiz, 2018, 3(4): 417-429.
|
21 |
Wang L, Jia Y, Wang Y, et al. Defect passivation of low-temperature processed ZnO electron transport layer with polyethylenimine for PbS quantum dot photovoltaics[J]. ACS Applied Energy Materials, 2019, 2(3): 1695-1701.
|
22 |
Yin Z, Zheng Q, Chen S C, et al. Bandgap tunable Zn1-xMgxO thin films as highly transparent cathode buffer layers for high-performance inverted polymer solar cells[J]. Advanced Energy Materials, 2014, 4(7): 1301404.
|
23 |
Yin Z, Zheng Q, Chen S C, et al. Controllable ZnMgO electron-transporting layers for long-term stable organic solar cells with 8.06% efficiency after one-year storage[J]. Advanced Energy Materials, 2016, 6(4): 1501493.
|
24 |
Azmi R, Seo G, Ahn T K, et al. High-efficiency air-stable colloidal quantum dot solar cells based on a potassium-doped ZnO electron-accepting layer[J]. ACS Appl. Mater. Interfaces, 2018, 10(41): 35244-35249.
|
25 |
Neupane G R, Kaphle A, Hari P. Microwave-assisted Fe-doped ZnO nanoparticles for enhancement of silicon solar cell efficiency[J]. Solar Energy Materials and Solar Cells, 2019, 201: 110073.
|
26 |
Choi J, Kim Y, Jo J W, et al. Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics[J]. Adv. Mater., 2017, 29(33): 1702350.
|
27 |
Gao Y, Patterson R, Hu L, et al. MgCl2 passivated ZnO electron transporting layer to improve PbS quantum dot solar cells[J]. Nanotechnology, 2019, 30(8): 085403.
|
28 |
Ehrler B, Musseiman K P, Bohm M L, et al. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide[J]. ACS Nano, 2013, 7(5): 4210-4220.
|
29 |
Kirmani A R, García de Arquer F P, Fan J Z, et al. Molecular doping of the hole-transporting layer for efficient, single-step-deposited colloidal quantum dot photovoltaics[J]. ACS Energy Letters, 2017, 2(9): 1952-1959.
|
30 |
Liu M, de Arquer F P G, Li Y, et al. Double-sided junctions enable high-performance colloidal-quantum-dot photovoltaics[J]. Advanced Materials, 2016, 28(21): 4142-4148.
|
31 |
Zhang X, Jia D, Hägglund C, et al. Highly photostable and efficient semitransparent quantum dot solar cells by using solution-phase ligand exchange[J]. Nano Energy, 2018, 53: 373-382.
|
32 |
Rekemeyer P H, Chang S, Chuang C H M, et al. Enhanced photocurrent in PbS quantum dot photovoltaics via ZnO nanowires and band alignment engineering[J]. Advanced Energy Materials, 2016, 6(24): 1600848.
|
33 |
Cao Y, Stavrinadis A, Lasanta T, et al. The role of surface passivation for efficient and photostable PbS quantum dot solar cells[J]. Nature Energy, 2016, 1(4): 16035.
|
34 |
Willis S M, Cheng C, Assender H E, et al. The transitional heterojunction behavior of PbS/ZnO colloidal quantum dot solar cells[J]. Nano Letters, 2012, 12(3): 1522-1526.
|
35 |
Zhai G, Bezryadina A, Breeze A J, et al. Air stability of TiO2/PbS colloidal nanoparticle solar cells and its impact on power efficiency[J]. Applied Physics Letters, 2011, 99(6): 063512.
|