CIESC Journal ›› 2021, Vol. 72 ›› Issue (5): 2647-2656.DOI: 10.11949/0438-1157.20210076
• Catalysis, kinetics and reactors • Previous Articles Next Articles
DONG Zichao1(),WU Yu2,ZHANG Bofeng1,LIU Sibao1,LIU Guozhu1(),ZHAO Jie2
Received:
2021-01-12
Revised:
2021-03-01
Online:
2021-05-05
Published:
2021-05-05
Contact:
LIU Guozhu
董子超1(),吴玉2,张博风1,刘斯宝1,刘国柱1(),赵杰2
通讯作者:
刘国柱
作者简介:
董子超(1995—),男,硕士,基金资助:
CLC Number:
DONG Zichao, WU Yu, ZHANG Bofeng, LIU Sibao, LIU Guozhu, ZHAO Jie. Preparation and performances of FeCo/MC catalysts for CO2 hydrogenation to light olefins[J]. CIESC Journal, 2021, 72(5): 2647-2656.
董子超, 吴玉, 张博风, 刘斯宝, 刘国柱, 赵杰. 新型FeCo双金属催化剂催化CO2加氢制低碳烯烃[J]. 化工学报, 2021, 72(5): 2647-2656.
Add to citation manager EndNote|Ris|BibTeX
X | Co①/%(mass) | Fe①/%(mass) | Fe/Co② | SBET/ (m2·g-1) | Smicro/ (m2·g-1) | Smeso/ (m2·g-1) | Vmicro/ (cm3·g-1) | Vmeso/ (cm3·g-1) |
---|---|---|---|---|---|---|---|---|
3 | 9.1 | 26.5 | 3.1 | 152.9 | 43.5 | 109.4 | 0.02 | 0.31 |
4 | 6.6 | 26.0 | 4.1 | 133.3 | 14.6 | 118.7 | 0 | 0.32 |
6 | 4.6 | 25.5 | 5.8 | 118.2 | 6.6 | 111.6 | 0 | 0.27 |
9 | 3.9 | 34.0 | 9.1 | 171.1 | 54.9 | 116.2 | 0.02 | 0.42 |
Table 1 Specific surface area properties of FeCo(X∶1)/MC catalysts
X | Co①/%(mass) | Fe①/%(mass) | Fe/Co② | SBET/ (m2·g-1) | Smicro/ (m2·g-1) | Smeso/ (m2·g-1) | Vmicro/ (cm3·g-1) | Vmeso/ (cm3·g-1) |
---|---|---|---|---|---|---|---|---|
3 | 9.1 | 26.5 | 3.1 | 152.9 | 43.5 | 109.4 | 0.02 | 0.31 |
4 | 6.6 | 26.0 | 4.1 | 133.3 | 14.6 | 118.7 | 0 | 0.32 |
6 | 4.6 | 25.5 | 5.8 | 118.2 | 6.6 | 111.6 | 0 | 0.27 |
9 | 3.9 | 34.0 | 9.1 | 171.1 | 54.9 | 116.2 | 0.02 | 0.42 |
催化剂 | CO2 吸附量①/(mmol·g-1) | CO2 转化率/% | 产物选择性/% | O/P② | |||||
---|---|---|---|---|---|---|---|---|---|
CO | CH4 | C2~C4 | C2=~C4= | C5+ | alcohol | ||||
FeCo(3∶1)/MC | 0.036 | 36.37 | 10.90 | 37.10 | 14.58 | 28.31 | 3.97 | 5.14 | 1.94 |
FeCo(4∶1)/MC | 0.031 | 34.63 | 11.93 | 31.69 | 12.57 | 34.40 | 3.96 | 5.45 | 2.74 |
FeCo(6:∶1)/MC | 0.026 | 32.72 | 13.48 | 27.30 | 10.59 | 37.14 | 5.49 | 6.00 | 3.51 |
FeCo(9∶1)/MC | 0.022 | 29.17 | 16.19 | 26.33 | 10.70 | 35.60 | 5.03 | 6.15 | 3.32 |
Fe/MC | 0.003 | 14.79 | 37.57 | 21.04 | 25.46 | 8.14 | 7.79 | 0 | 0.32 |
Table 2 CO2 hydrogenation performance of FeCo/MC catalysts
催化剂 | CO2 吸附量①/(mmol·g-1) | CO2 转化率/% | 产物选择性/% | O/P② | |||||
---|---|---|---|---|---|---|---|---|---|
CO | CH4 | C2~C4 | C2=~C4= | C5+ | alcohol | ||||
FeCo(3∶1)/MC | 0.036 | 36.37 | 10.90 | 37.10 | 14.58 | 28.31 | 3.97 | 5.14 | 1.94 |
FeCo(4∶1)/MC | 0.031 | 34.63 | 11.93 | 31.69 | 12.57 | 34.40 | 3.96 | 5.45 | 2.74 |
FeCo(6:∶1)/MC | 0.026 | 32.72 | 13.48 | 27.30 | 10.59 | 37.14 | 5.49 | 6.00 | 3.51 |
FeCo(9∶1)/MC | 0.022 | 29.17 | 16.19 | 26.33 | 10.70 | 35.60 | 5.03 | 6.15 | 3.32 |
Fe/MC | 0.003 | 14.79 | 37.57 | 21.04 | 25.46 | 8.14 | 7.79 | 0 | 0.32 |
1 | 巩金龙. CO2化学转化研究进展概述[J]. 化工学报, 2017, 68(4): 1282-1285. |
Gong J L. A brief overview on recent progress on chemical conversion of CO2[J]. CIESC Journal, 2017, 68(4): 1282-1285. | |
2 | Liu X, Wang M, Zhou C, et al. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J]. Chem. Commun. (Camb.), 2018, 54(2): 140-143. |
3 | Zhou W, Cheng K, Kang J C, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019, 48(12): 3193-3228. |
4 | Saeidi S, Najari S, Fazlollahi F, et al. Mechanisms and kinetics of CO2 hydrogenation to value-added products: a detailed review on current status and future trends[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 1292-1311. |
5 | Muleja A A, Gorimbo J, Masuku C M. Effect of co-feeding inorganic and organic molecules in the Fe and Co catalyzed Fischer–Tropsch synthesis: a review[J]. Catalysts, 2019, 9(9): 746. |
6 | Yang X Z, Zhang H, Liu Y X, et al. Preparation of iron carbides formed by iron oxalate carburization for Fischer–Tropsch synthesis[J]. Catalysts, 2019, 9(4): 347. |
7 | Puga A V. On the nature of active phases and sites in CO and CO2 hydrogenation catalysts[J]. Catalysis Science & Technology, 2018, 8(22): 5681-5707. |
8 | Liu M, Yi Y H, Wang L, et al. Hydrogenation of carbon dioxide to value-added chemicals by heterogeneous catalysis and plasma catalysis[J]. Catalysts, 2019, 9(3): 275. |
9 | 张玉龙, 邵光印, 张征湃, 等. 活化气氛对CO2加氢制取低碳烯烃Fe-K催化剂构-效关系[J]. 化工学报, 2018, 69(2): 690-698. |
Zhang Y L, Shao G Y, Zhang Z P, et al. Activation atmospheres on structure-performance relationship of K-promoted Fe catalysts for lower olefin synthesis from CO2 hydrogenation[J]. CIESC Journal, 2018, 69(2): 690-698. | |
10 | Liang B L, Duan H M, Sun T, et al. Effect of Na promoter on Fe-based catalyst for CO2 hydrogenation to alkenes[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 925-932. |
11 | Yang H Y, Zhang C, Gao P, et al. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons[J]. Catalysis Science & Technology, 2017, 7(20): 4580-4598. |
12 | Dorner R W, Hardy D R, Williams F W, et al. K and Mn doped iron-based CO2 hydrogenation catalysts: detection of KAlH4 as part of the catalyst's active phase[J]. Applied Catalysis A: General, 2010, 373(1/2): 112-121. |
13 | Ando H. Selective alkene production by the hydrogenation of carbon dioxide over Fe-Cu catalyst[J]. Energy Procedia, 2016, 89: 421-427. |
14 | Wang X, Zhang J L, Chen J Y, et al. Effect of preparation methods on the structure and catalytic performance of Fe-Zn/K catalysts for CO2 hydrogenation to light olefins[J]. Chinese Journal of Chemical Engineering, 2018, 26(4): 761-767. |
15 | Satthawong R, Koizumi N, Song C S, et al. Bimetallic Fe-Co catalysts for CO2 hydrogenation to higher hydrocarbons[J]. Journal of CO2 Utilization, 2013, 3/4: 102-106. |
16 | Li S W, Xu Y, Chen Y F, et al. Tuning the selectivity of catalytic carbon dioxide hydrogenation over iridium/cerium oxide catalysts with a strong metal-support interaction[J]. Angewandte Chemie International Edition, 2017, 56(36): 10761-10765. |
17 | Yoon S, Oh K, Liu F D, et al. Specific metal–support interactions between nanoparticle layers for catalysts with enhanced methanol oxidation activity[J]. ACS Catalysis, 2018, 8(6): 5391-5398. |
18 | 刘洋洋, 孙超, Malhi Haripal Singh, 等. 载体对铁基催化剂结构及CO2加氢制烯烃反应性能的影响特性[J]. 化工学报, 2020, 71(10): 4652-4662. |
Liu Y Y, Sun C, Singh M H, et al. Effects of identities of supports on Fe-based catalyst and their consequences on activities of CO2 hydrogenation to olefins[J]. CIESC Journal, 2020, 71(10): 4652-4662. | |
19 | Wan H J, Wu B S, Xiang H W, et al. Fischer–Tropsch synthesis: influence of support incorporation manner on metal dispersion, metal–support interaction, and activities of iron catalysts[J]. ACS Catalysis, 2012, 2(9): 1877-1883. |
20 | Wei J, Ge Q, Yao R, et al. Directly converting CO2 into a gasoline fuel[J]. Nature Communications, 2017, 8: 15174. |
21 | Dokania A, Ramirez A, Bavykina A, et al. Heterogeneous catalysis for the valorization of CO2: role of bifunctional processes in the production of chemicals[J]. ACS Energy Letters, 2019, 4(1): 167-176. |
22 | Cheng Y, Lin J, Wu T J, et al. Mg and K dual-decorated Fe-on-reduced graphene oxide for selective catalyzing CO hydrogenation to light olefins with mitigated CO2 emission and enhanced activity[J]. Applied Catalysis B: Environmental, 2017, 204: 475-485. |
23 | Chew L M, Kangvansura P, Ruland H, et al. Effect of nitrogen doping on the reducibility, activity and selectivity of carbon nanotube-supported iron catalysts applied in CO2 hydrogenation[J]. Applied Catalysis A: General, 2014, 482: 163-170. |
24 | Williamson D L, Herdes C, Torrente-Murciano L, et al. N-Doped Fe@CNT for combined RWGS/FT CO2 hydrogenation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 7395-7402. |
25 | Li Y H, Cai X H, Chen S J, et al. Highly dispersed metal carbide on ZIF-derived pyridinic-N-doped carbon for CO2 enrichment and selective hydrogenation[J]. ChemSusChem, 2018, 11(6): 1040-1047. |
26 | Zheng Y L, Cheng P, Xu J S, et al. MOF-derived nitrogen-doped nanoporous carbon for electroreduction of CO2 to CO: the calcining temperature effect and the mechanism[J]. Nanoscale, 2019, 11(11): 4911-4917. |
27 | Hu S, Liu M, Ding F S, et al. Hydrothermally stable MOFs for CO2 hydrogenation over iron-based catalyst to light olefins[J]. Journal of CO2 Utilization, 2016, 15: 89-95. |
28 | Ramirez A, Gevers L, Bavykina A, et al. Metal organic framework-derived iron catalysts for the direct hydrogenation of CO2 to short chain olefins[J]. ACS Catalysis, 2018, 8(10): 9174-9182. |
29 | Dong Z C, Zhao J, Tian Y J, et al. Preparation and performances of ZIF-67-derived FeCo bimetallic catalysts for CO2 hydrogenation to light olefins[J]. Catalysts, 2020, 10(4): 455. |
30 | Visconti C G, Martinelli M, Falbo L, et al. CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst[J]. Applied Catalysis B: Environmental, 2017, 200: 530-542. |
31 | de Smit E, Cinquini F, Beale A M, et al. Stability and reactivity of ϵ-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μ(C)[J]. Journal of the American Chemical Society, 2010, 132(42): 14928-14941. |
32 | Ding M Y, Yang Y, Wu B S, et al. Study on reduction and carburization behaviors of iron phases for iron-based Fischer-Tropsch synthesis catalyst[J]. Applied Energy, 2015, 160: 982-989. |
33 | Ishida T, Yanagihara T, Liu X H, et al. Synthesis of higher alcohols by Fischer-Tropsch synthesis over alkali metal-modified cobalt catalysts[J]. Applied Catalysis A: General, 2013, 458: 145-154. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[6] | Yihao ZHANG, Zhenlei WANG. Fault detection using grouped support vector data description based on maximum information coefficient [J]. CIESC Journal, 2023, 74(9): 3865-3878. |
[7] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[8] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[9] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[10] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[11] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[12] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[13] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[14] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[15] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||