CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4708-4717.DOI: 10.11949/0438-1157.20210239
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Haitao LI(),Pingfan MENG,Yin ZHANG,Ruifang WU,Xin HUANG,Lijun BAN,Xudong HAN,Lin XI,Xinghao WANG,Bohui TIAN,Yongxiang ZHAO()
Received:
2021-02-07
Revised:
2021-06-29
Online:
2021-09-05
Published:
2021-09-05
Contact:
Yongxiang ZHAO
李海涛(),孟平凡,张因,武瑞芳,黄鑫,班丽君,韩旭东,席琳,王兴皓,田博辉,赵永祥()
通讯作者:
赵永祥
作者简介:
李海涛(1982—),男,博士,副教授,基金资助:
CLC Number:
Haitao LI, Pingfan MENG, Yin ZHANG, Ruifang WU, Xin HUANG, Lijun BAN, Xudong HAN, Lin XI, Xinghao WANG, Bohui TIAN, Yongxiang ZHAO. Study on formaldehyde ethynylation performance of CuO nanocrystalline confined in SiO2 networks[J]. CIESC Journal, 2021, 72(9): 4708-4717.
李海涛, 孟平凡, 张因, 武瑞芳, 黄鑫, 班丽君, 韩旭东, 席琳, 王兴皓, 田博辉, 赵永祥. SiO2网络限域CuO纳米晶的甲醛乙炔化性能研究[J]. 化工学报, 2021, 72(9): 4708-4717.
Add to citation manager EndNote|Ris|BibTeX
Catalyst | 比表面积ABET /(m2 ·g-1)① | 孔径Dpore/nm① | 孔体积VTotal/(cm3·g-1)① | Cuo晶粒尺寸DCuO/nm② |
---|---|---|---|---|
CuO-SiO2 | 549 | 5.05 | 0.69 | — |
CuO-SiO2-350 | 532 | 4.75 | 0.63 | — |
CuO-SiO2-450 | 502 | 4.94 | 0.62 | — |
CuO-SiO2-550 | 499 | 4.89 | 0.61 | — |
CuO-SiO2-650 | 392 | 5.43 | 0.51 | 5.6 |
CuO-SiO2-750 | 312 | 5.63 | 0.45 | 8.6 |
CuO-SiO2-850 | 150 | 7.36 | 0.28 | 11.4 |
Table 1 Textural properties and CuO crystalline size of catalysts
Catalyst | 比表面积ABET /(m2 ·g-1)① | 孔径Dpore/nm① | 孔体积VTotal/(cm3·g-1)① | Cuo晶粒尺寸DCuO/nm② |
---|---|---|---|---|
CuO-SiO2 | 549 | 5.05 | 0.69 | — |
CuO-SiO2-350 | 532 | 4.75 | 0.63 | — |
CuO-SiO2-450 | 502 | 4.94 | 0.62 | — |
CuO-SiO2-550 | 499 | 4.89 | 0.61 | — |
CuO-SiO2-650 | 392 | 5.43 | 0.51 | 5.6 |
CuO-SiO2-750 | 312 | 5.63 | 0.45 | 8.6 |
CuO-SiO2-850 | 150 | 7.36 | 0.28 | 11.4 |
Catalyst | Before reaction | After reaction | |||||
---|---|---|---|---|---|---|---|
Peak binding energy/eV | Cu2+(Ⅰ)/Cu2+(Ⅱ) | Cu/Si | Peak kinetic energy/eV | Cu+/Cu2+ | |||
Cu2+(Ⅰ) | Cu2+(Ⅱ) | Cu+ | Cu2+ | ||||
CuO-SiO2-450 | 934.1 | 936.3 | 0.05 | 0.54 | 915.0 | 917.3 | 1.71 |
CuO-SiO2-650 | 934.4 | 936.6 | 0.17 | 0.36 | 915.1 | 917.7 | 4.82 |
CuO-SiO2-850 | 934.7 | 936.8 | 2.08 | 0.13 | 915.0 | 917.5 | 3.48 |
Table 2 Chemical environment of Cu species in CuO-SiO2
Catalyst | Before reaction | After reaction | |||||
---|---|---|---|---|---|---|---|
Peak binding energy/eV | Cu2+(Ⅰ)/Cu2+(Ⅱ) | Cu/Si | Peak kinetic energy/eV | Cu+/Cu2+ | |||
Cu2+(Ⅰ) | Cu2+(Ⅱ) | Cu+ | Cu2+ | ||||
CuO-SiO2-450 | 934.1 | 936.3 | 0.05 | 0.54 | 915.0 | 917.3 | 1.71 |
CuO-SiO2-650 | 934.4 | 936.6 | 0.17 | 0.36 | 915.1 | 917.7 | 4.82 |
CuO-SiO2-850 | 934.7 | 936.8 | 2.08 | 0.13 | 915.0 | 917.5 | 3.48 |
Catalyst | Cu in mother liquid/(mg/L) | ||
---|---|---|---|
1 Cycle | 3 Cycles | 6 Cycles | |
CuO-SiO2-450 | 33.8 | 35.2 | 36.5 |
CuO-SiO2-650 | 35.7 | 37.3 | 36.2 |
CuO-SiO2-850 | 37.9 | 39.5 | 38.4 |
Table 3 Leaching content of Cu in different catalysts
Catalyst | Cu in mother liquid/(mg/L) | ||
---|---|---|---|
1 Cycle | 3 Cycles | 6 Cycles | |
CuO-SiO2-450 | 33.8 | 35.2 | 36.5 |
CuO-SiO2-650 | 35.7 | 37.3 | 36.2 |
CuO-SiO2-850 | 37.9 | 39.5 | 38.4 |
1 | Dudzińska A. Analysis of sorption and desorption of unsaturated hydrocarbons: ethylene, propylene and acetylene on hard coals[J]. Fuel, 2019, 246: 232-243. |
2 | Cai Y C, Liu X C. Mechanical properties test of pavement base or subbase made of solid waste stabilized by acetylene sludge and fly ash[J]. AIP Advances, 2020, 10(6): 065022. |
3 | 杨冲, 林旭枫, 张金锋, 等. 正己烷–异丙醇共沸体系液液相平衡数据测定及关联[J]. 化工学报, 2020, 71(7): 3009-3017. |
Yang C, Lin X F, Zhang J F, et al. Measurement and correlation of liquid-liquid equilibrium data for n-hexane-isopropanol azeotropic system[J]. CIESC Journal, 2020, 71(7): 3009-3017. | |
4 | Heisig C, Diedenhoven J, Jensen C, et al. Selective hydrogenation of biomass-derived succinic acid: reaction network and kinetics[J]. Chemical Engineering & Technology, 2020, 43(3): 484-492. |
5 | 蒋瑞, 胡冬冬, 刘涛, 等. 热塑性聚醚酯弹性体硬段含量对其超临界CO2发泡行为的影响[J]. 化工学报, 2020, 71(2): 871-878. |
Jiang R, Hu D D, Liu T, et al. Effect of hard segment content on microcellular foaming process of thermoplastic polyether ester elastomer using supercritical CO2 as blowing agent[J]. CIESC Journal, 2020, 71(2): 871-878. | |
6 | Le S D, Nishimura S. Highly selective synthesis of 1, 4-butanediol via hydrogenation of succinic acid with supported Cu-Pd alloy nanoparticles[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(22): 18483-18492. |
7 | Raju M A, Gidyonu P, Nagaiah P, et al. Mesoporous silica-supported copper catalysts for dehydrogenation of biomass-derived 1, 4-butanediol to gamma butyrolactone in a continuous process at atmospheric pressure[J]. Biomass Conversion and Biorefinery, 2019, 9(4): 719-726. |
8 | Chaudhari R V, Rode C V, Jaganathan R, et al. Process for the conversion of 1, 4 butynediol to 1, 4butanediol, or a mixture of 1, 4 butenediol and 1, 4 butanediol: US6469221[P]. 2002-10-22. |
9 | Lu C Y, Wang Y, Zhang R G, et al. Preparation of an unsupported copper-based catalyst for selective hydrogenation of acetylene from Cu2O nanocubes[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46027-46036. |
10 | Zak D. Butynediol production: US4085151[P]. 1978-04-18.. |
11 | Fremont J. Malachite preparation: US4107082 A[P]. 1978-08-15. |
12 | 郑艳, 孙自瑾, 王永钊, 等. CuO-Bi2O3/SiO2-MgO催化剂的制备及炔化性能[J]. 分子催化, 2012, 26(3): 233-238. |
Zheng Y, Sun Z J, Wang Y Z, et al. Preparation of CuO-Bi2O3/SiO2-MgO catalyst and its ethynylation performance[J]. Journal of Molecular Catalysis, 2012, 26(3): 233-238. | |
13 | 王俊俊, 李海涛, 马志强, 等. 磁性CuO-Bi2O3/Fe3O4-SiO2-MgO催化剂的制备及甲醛乙炔化性能[J]. 化工学报, 2015, 66(6): 2098-2104. |
Wang J J, Li H T, Ma Z Q, et al. Preparation of magnetic CuO-Bi2O3/Fe3O4-SiO2-MgO catalyst and its catalytic performance for formaldehyde ethynylation[J]. CIESC Journal, 2015, 66(6): 2098-2104. | |
14 | 马志强, 张洪喜, 李海涛, 等. 核壳结构CuO-Bi2O3@meso-SiO2催化剂的制备及甲醛乙炔化性能[J]. 工业催化, 2015, 23(5): 344-348. |
Ma Z Q, Zhang H X, Li H T, et al. Preparation of core-shell CuO-Bi2O3@meso-SiO2 catalyst and its catalytic performance for formaldehyde ethynylation[J]. Industrial Catalysis, 2015, 23(5): 344-348. | |
15 | 杨国峰, 李海涛, 张鸿喜, 等. NaOH浓度对Cu2O结构及甲醛乙炔化性能的影响[J]. 分子催化, 2016, 30(6): 540-546. |
Yang G F, Li H T, Zhang H X, et al. Effect of Na OH concentration on structure and catalytic performance of Cu2O for formaldehyde ethynylation[J]. Journal of Molecular Catalysis (China), 2016, 30(6): 540-546. | |
16 | 李海涛, 牛珠珠, 杨国峰, 等. Cu2O/TiO2催化甲醛乙炔化反应的载体效应[J]. 化工学报, 2018, 69(6): 2512-2518. |
Li H T, Niu Z Z, Yang G F, et al. Effect of Cu2O/TiO2 catalyst support in formaldehyde ethynylation[J]. CIESC Journal, 2018, 69(6): 2512-2518. | |
17 | 李海涛, 郝全爱, 王志鹏, 等. 不同沉淀剂制备CuO-ZnO催化剂甲醛乙炔化反应性能[J]. 分子催化, 2019, 33(2): 124-131. |
LI H T, HAO Q A, WANG Z P, et al. Study on catalytic performance of CuO-ZnO catalyst prepared by different precipitants[J]. Journal of Molecular Catalysis (China), 2019, 33(2): 124-131. | |
18 | Wang Z P, Ban L J, Meng P F, et al. Ethynylation of formaldehyde over binary Cu-based catalysts: study on synergistic effect between Cu+ species and acid/base sites[J]. Nanomaterials, 2019, 9(7): 1038. |
19 | Wang Z P, Ban L J, Meng P F, et al. Ethynylation of formaldehyde over CuO/SiO2 catalysts modified by Mg species: effects of the existential states of Mg species[J]. Nanomaterials, 2019, 9(8): 1137. |
20 | Li H T, Ban L J, Niu Z Z, et al. Application of CuxO-FeyOz nanocatalysts in ethynylation of formaldehyde[J]. Nanomaterials, 2019, 9(9): 1301. |
21 | Guerreiro E D, Gorriz O F, Larsen G, et al. Cu/SiO2 catalysts for methanol to methyl formate dehydrogenation: a comparative study using different preparation techniques[J]. Applied Catalysis A: General, 2000, 204(1): 33-48. |
22 | Brands D S, Poels E K, Bliek A. Ester hydrogenolysis over promoted Cu/SiO2 catalysts[J]. Applied Catalysis A: General, 1999, 184(2): 279-289. |
23 | Chen L, Guo P, Qiao M, et al. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. Journal of Catalysis, 2008, 257(1): 172-180. |
24 | Wang Z Q, Xu Z N, Peng S Y, et al. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation[J]. ACS Catalysis, 2015, 5(7): 4255-4259. |
25 | Ding T M, Tian H S, Liu J C, et al. Highly active Cu/SiO2 catalysts for hydrogenation of diethyl malonate to 1, 3-propanediol[J]. Chinese Journal of Catalysis, 2016, 37(4): 484-493. |
26 | 杨亚玲, 张博, 李伟, 等. 焙烧温度对草酸二甲酯加氢制乙二醇催化剂Cu/SiO2的影响[J]. 工业催化, 2010, 18(6): 28-31. |
Yang Y L, Zhang B, Li W, et al. Effects of calcinations temperature on the properties of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol[J]. Industrial Catalysis, 2010, 18(6): 28-31. | |
27 | Li H T, Ban L J, Wang Z P, et al. Regulation of Cu species in CuO/SiO2 and its structural evolution in ethynylation reaction[J]. Nanomaterials, 2019, 9(6): 842. |
28 | Wang Z P, Niu Z Z, Hao Q, et al. Enhancing the ethynylation performance of CuO-Bi2O3 nanocatalysts by tuning Cu-Bi interactions and phase structures[J]. Catalysts, 2019, 9(1): 35. |
29 | 王志鹏, 牛珠珠, 班丽君, 等. 不同晶相TiO2负载Cu2O催化甲醛乙炔化反应[J]. 高等学校化学学报, 2019, 40(2): 334-341. |
Wang Z P, Niu Z Z, Ban L J, et al. Formaldehyde ethynylation reaction over Cu2O supported on TiO2 with different phases[J]. Chemical Journal of Chinese Universities, 2019, 40(2): 334-341. | |
30 | 李海涛, 班丽君, 牛珠珠, 等. 制备条件对Cu2O结构及甲醛乙炔化性能的影响[J]. 分子催化, 2019, 33(3): 237-244. |
Li H T, Ban L J, Niu Z Z, et al. Effect of preparation condition on structure and catalytic performance of Cu2O for formaldehyde ethynylation[J]. Journal of Molecular Catalysis (China), 2019, 33(3): 237-244. | |
31 | Dong F, Ding G Q, Zheng H Y, et al. Highly dispersed Cu nanoparticles as an efficient catalyst for the synthesis of the biofuel 2-methylfuran[J]. Catalysis Science & Technology, 2016, 6(3): 767-779. |
32 | Gong J L, Yue H R, Zhao Y J, et al. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites[J]. Journal of the American Chemical Society, 2012, 134(34): 13922-13925. |
33 | Zou G, Li H, Zhang D, et al. Well-aligned arrays of CuO nanoplatelets[J]. The Journal of Physical Chemistry B, 2006, 110(4): 1632-1637. |
34 | Wang Z, Liu Q S, Yu J F, et al. Surface structure and catalytic behavior of silica-supported copper catalysts prepared by impregnation and Sol-gel methods[J]. Applied Catalysis A: General, 2003, 239(1/2): 87-94. |
35 | Cordoba G, Arroyo R, Fierro J L G, et al. Study of xerogel-glass transition of CuO/SiO2[J]. Journal of Solid State Chemistry, 1996, 123(1): 93-99. |
36 | Díaz G, Pérez-Hernández R, Gómez-Cortés A, et al. CuO-SiO2 sol-gel catalysts: characterization and catalytic properties for NO reduction[J]. Journal of Catalysis, 1999, 187(1): 1-14. |
37 | Toupance T, Kermarec M, Lambert J F, et al. Conditions of formation of copper phyllosilicates in silica-supported copper catalysts prepared by selective adsorption[J]. The Journal of Physical Chemistry B, 2002, 106(9): 2277-2286. |
38 | Kliche G, Popovic Z V. Far-infrared spectroscopic investigations on CuO[J]. Physical Review B, Condensed Matter, 1990, 42(16): 10060-10066. |
39 | Dunning T H, McKoy V. Nonempirical calculations on excited states: the ethylene molecule[J]. The Journal of Chemical Physics, 1967, 47(5): 1735-1747. |
40 | Degen I A, Newman G A. Raman spectra of inorganic ions[J]. Spectrochimica Acta Part A: Molecular Spectroscopy, 1993, 49(5/6): 859-887. |
41 | Goldstein H F, Kim D S, Yu P Y, et al. Raman study of CuO single crystals[J]. Physical Review B, 1990, 41(10): 7192-7194. |
42 | Irwin J C, Chrzanowski J, Wei T, et al. Raman scattering from single crystals of cupric oxide[J]. Physica C: Superconductivity, 1990, 166(5/6): 456-464. |
43 | Huang Z W, Liu H L, Cui F, et al. Effects of the precipitation agents and rare earth additives on the structure and catalytic performance in glycerol hydrogenolysis of Cu/SiO2 catalysts prepared by precipitation-gel method[J]. Catalysis Today, 2014, 234: 223-232. |
44 | Huang Z W, Cui F, Xue J J, et al. Cu/SiO2 catalysts prepared by hom- and heterogeneous deposition-precipitation methods: texture, structure, and catalytic performance in the hydrogenolysis of glycerol to 1, 2-propanediol[J]. Catalysis Today, 2012, 183(1): 42-51. |
45 | Huang Z W, Cui F, Xue J J, et al. Synthesis and structural characterization of silica dispersed copper nanomaterials with unusual thermal stability prepared by precipitation-gel method[J]. The Journal of Physical Chemistry C, 2010, 114(39): 16104-16113. |
46 | Oosterwyck-Gastuche M C V. La structure de la chrysocolle[EB/OL]. [2021-01-05]. . |
47 | Wang C, Cheng Q P, Wang X L, et al. Enhanced catalytic performance for CO preferential oxidation over CuO catalysts supported on highly defective CeO2 nanocrystals[J]. Applied Surface Science, 2017, 422: 932-943. |
48 | Cocco F, Elsener B, Fantauzzi M, et al. Nanosized surface films on brass alloys by XPS and XAES[J]. RSC Advances, 2016, 6(37): 31277-31289. |
[1] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[4] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[5] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[6] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[7] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[8] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[9] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[10] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[11] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[12] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[13] | Wenchao XU, Zhigao SUN, Cuimin LI, Juan LI, Haifeng HUANG. Effect of surfactant E-1310 on the formation of HCFC-141b hydrate under static conditions [J]. CIESC Journal, 2023, 74(5): 2179-2185. |
[14] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[15] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||