CIESC Journal ›› 2022, Vol. 73 ›› Issue (11): 5065-5077.DOI: 10.11949/0438-1157.20221035
• Process system engineering • Previous Articles Next Articles
Guixian LI1,2(), Ke WANG1,2, Jian WANG1,2, Wenliang MENG1,2, Jingwei LI1,2, Yong YANG1,2, Zongliang FAN1,2, Dongliang WANG1,2(), Huairong ZHOU1,2()
Received:
2022-07-20
Revised:
2022-08-16
Online:
2022-12-06
Published:
2022-11-05
Contact:
Dongliang WANG, Huairong ZHOU
李贵贤1,2(), 王可1,2, 王健1,2, 孟文亮1,2, 李婧玮1,2, 杨勇1,2, 范宗良1,2, 王东亮1,2(), 周怀荣1,2()
通讯作者:
王东亮,周怀荣
作者简介:
李贵贤(1966—),男,博士,教授,lgxwyf@163.com
基金资助:
CLC Number:
Guixian LI, Ke WANG, Jian WANG, Wenliang MENG, Jingwei LI, Yong YANG, Zongliang FAN, Dongliang WANG, Huairong ZHOU. Optimal design of membrane separation process for capturing CO2 from flue gas of coal-fired power plant[J]. CIESC Journal, 2022, 73(11): 5065-5077.
李贵贤, 王可, 王健, 孟文亮, 李婧玮, 杨勇, 范宗良, 王东亮, 周怀荣. 膜分离捕集燃煤电厂烟气CO2过程优化设计[J]. 化工学报, 2022, 73(11): 5065-5077.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 | 单位 | |
---|---|---|---|
燃煤电厂功率 | 550 | MW | |
烟气流量 | 22 | kmol/s | |
烟气组成 | N2 | 68.8 | %(mol) |
CO2 | 13.5 | %(mol) | |
O2 | 2.4 | %(mol) | |
H2O | 15.3 | %(mol) | |
温度 | 330 | K | |
压力 | 0.1 | MPa |
Table 1 Data of coal-fired power plant
参数 | 数值 | 单位 | |
---|---|---|---|
燃煤电厂功率 | 550 | MW | |
烟气流量 | 22 | kmol/s | |
烟气组成 | N2 | 68.8 | %(mol) |
CO2 | 13.5 | %(mol) | |
O2 | 2.4 | %(mol) | |
H2O | 15.3 | %(mol) | |
温度 | 330 | K | |
压力 | 0.1 | MPa |
设备 | 投资系数 | 设备折 旧系数 | 使用 寿命/a | 维护费 用系数 | 设备 效率/% |
---|---|---|---|---|---|
压缩机 | 96000 USD/(m3·s) | 0.064 | 25 | 0.036 | 85 |
换热器 | — | 0.064 | 25 | 0.036 | 80 |
膨胀机 | — | 0.064 | 25 | 0.036 | 85 |
膜元件 | 50 USD/m2 | 0.225 | 5 | 0.010 | — |
Table 2 Equipment parameters [27]
设备 | 投资系数 | 设备折 旧系数 | 使用 寿命/a | 维护费 用系数 | 设备 效率/% |
---|---|---|---|---|---|
压缩机 | 96000 USD/(m3·s) | 0.064 | 25 | 0.036 | 85 |
换热器 | — | 0.064 | 25 | 0.036 | 80 |
膨胀机 | — | 0.064 | 25 | 0.036 | 85 |
膜元件 | 50 USD/m2 | 0.225 | 5 | 0.010 | — |
28 | Pfister M, Belaissaoui B, Favre E. Membrane gas separation processes from wet postcombustion flue gases for carbon capture and use: a critical reassessment[J]. Industrial & Engineering Chemistry Research, 2017, 56(2): 591-602. |
29 | Brinkmann T, Pohlmann J, Withalm U, et al. Theoretical and experimental investigations of flat sheet membrane module types for high capacity gas separation applications[J]. Chemie Ingenieur Technik, 2013, 85(8): 1210-1220. |
30 | Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. Journal of Membrane Science, 1991, 62(2): 165-185. |
31 | Tuinier M J, Hamers H P, van Sint Annaland M. Techno-economic evaluation of cryogenic CO2 capture—a comparison with absorption and membrane technology[J]. International Journal of Greenhouse Gas Control, 2011, 5(6): 1559-1565. |
32 | Johan A. Carbon dioxide capture using phase changing solvents a comparison with state-of-the-art MEA technologies[D]. Gothenburg, Sweden: Chalmers University of Technology, 2017. |
1 | IEA. Global energy review: CO2 emissions in 2021[R/OL]. Paris: International Energy Agency, 2021. . |
2 | Bui M, Adjiman C S, Bardow A, et al. Carbon capture and storage (CCS): the way forward[J]. Energy & Environmental Science, 2018, 11(5): 1062-1176. |
3 | 许咪咪, 王淑娟. 液-液相变溶剂捕集CO2技术研究进展[J]. 化工学报, 2018, 69(5): 1809-1818. |
Xu M M, Wang S J. Research progress in CO2 capture technology using liquid-liquid biphasic solvents[J]. CIESC Journal, 2018, 69(5): 1809-1818. | |
4 | 徐冬, 张军, 翟玉春, 等. 变压吸附分离工业废气中二氧化碳的研究进展[J]. 化工进展, 2010, 29(1): 150-156, 162. |
Xu D, Zhang J, Zhai Y C, et al. Progress in carbon dioxide capture from flue gas by pressure swing adsorption[J]. Chemical Industry and Engineering Progress, 2010, 29(1): 150-156, 162. | |
5 | 蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)——中国 CCUS 路径研究[R]. 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国 21 世纪议程管理中心, 2021. |
Cai B F, Li Q, Zhang X, et al. Annual report on carbon dioxide capture, utilization and storage (CCUS) in China (2021) —study on CCUS path in China[R]. Chinese Academy of Environmental Planning, Institute of Rock and Soil Mechanics of Chinese Academy of Sciences, The Administrative Centre for China's Agenda 21, 2021. | |
6 | Lee S, Binns M, Lee J H, et al. Membrane separation process for CO2 capture from mixed gases using TR and XTR hollow fiber membranes: process modeling and experiments[J]. Journal of Membrane Science, 2017, 541: 224-234. |
7 | Lau H S, Yong W F. Recent progress and prospects of polymeric hollow fiber membranes for gas application, water vapor separation and particulate matter removal[J]. Journal of Materials Chemistry A, 2021, 9(47): 26454-26497. |
8 | Dai Z D, Ansaloni L, Deng L Y. Recent advances in multi-layer composite polymeric membranes for CO2 separation: a review[J]. Green Energy & Environment, 2016, 1(2): 102-128. |
9 | 赵子淇, 张忠孝, 江砚池, 等. 聚酰亚胺中空纤维膜分离CO2/N2的影响因素分析[J]. 能源工程, 2020(2): 61-65. |
Zhao Z Q, Zhang Z X, Jiang Y C, et al. Study on influencing factors of polyimide hollow fiber membrane on CO2/N2 separation[J]. Energy Engineering, 2020(2): 61-65. | |
10 | Scholz M, Alders M, Lohaus T, et al. Structural optimization of membrane-based biogas upgrading processes[J]. Journal of Membrane Science, 2015, 474: 1-10. |
11 | Gabrielli P, Gazzani M, Mazzotti M. On the optimal design of membrane-based gas separation processes[J]. Journal of Membrane Science, 2017, 526: 118-130. |
12 | Kim M, Kim J. Optimization model for the design and feasibility analysis of membrane-based gas separation systems for CO2 enhanced coal bed methane (CO2-ECBM) applications[J]. Chemical Engineering Research and Design, 2018, 132: 853-864. |
13 | Hasan M M F, Baliban R C, Elia J A, et al. Modeling, simulation, and optimization of postcombustion CO2 capture for variable feed concentration and flow rate(part 2): Pressure swing adsorption and vacuum swing adsorption processes[J]. Industrial & Engineering Chemistry Research, 2012, 51(48): 15665-15682. |
14 | Song C F, Sun Y W, Fan Z C, et al. Parametric study of a novel cryogenic-membrane hybrid system for efficient CO2 separation[J]. International Journal of Greenhouse Gas Control, 2018, 72: 74-81. |
15 | 张淑君, 王诗慧, 张欣, 等. 集成轻烃回收单元代理模型的氢气网络多目标优化[J]. 化工学报, 2022, 73(4): 1658-1672. |
Zhang S J, Wang S H, Zhang X, et al. Surrogate-assisted multi-objective optimization of hydrogen networks with light hydrocarbon recovery unit[J]. CIESC Journal, 2022, 73(4): 1658-1672. | |
16 | 石向成, 赵志坚, 巩金龙. 遗传算法在催化体系的全局结构优化中的应用[J]. 化工学报, 2021, 72(1): 27-41. |
Shi X C, Zhao Z J, Gong J L. Application of genetic algorithm in the global structure optimization of catalytic system[J]. CIESC Journal, 2021, 72(1): 27-41. | |
17 | Zhang X P, He X Z, Gundersen T. Post-combustion carbon capture with a gas separation membrane: parametric study, capture cost, and exergy analysis[J]. Energy & Fuels, 2013, 27(8): 4137-4149. |
18 | Xu J Y, Wang Z, Qiao Z H, et al. Post-combustion CO2 capture with membrane process: practical membrane performance and appropriate pressure[J]. Journal of Membrane Science, 2019, 581: 195-213. |
19 | Zhao L, Riensche E, Blum L, et al. Multi-stage gas separation membrane processes used in post-combustion capture: energetic and economic analyses[J]. Journal of Membrane Science, 2010, 359(1/2): 160-172. |
20 | Ramasubramanian K, Verweij H, Winston Ho W S. Membrane processes for carbon capture from coal-fired power plant flue gas: a modeling and cost study[J]. Journal of Membrane Science, 2012, 421/422: 299-310. |
21 | 王志, 原野, 生梦龙, 等. 膜法碳捕集技术: 研究现状及展望[J]. 化工进展, 2022, 41(3): 1097-1101. |
Wang Z, Yuan Y, Sheng M L, et al. Membrane technology for carbon capture—research status and prospects[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1097-1101. | |
22 | Pan C Y. Gas separation by permeators with high-flux asymmetric membranes[J]. AIChE Journal, 1983, 29(4): 545-552. |
23 | Weller S, Steiner W A. Separation of gases by fractional permeation through membranes[J]. Journal of Applied Physics, 1950, 21(4): 279-283. |
24 | Shindo Y, Hakuta T, Yoshitome H, et al. Calculation methods for multicomponent gas separation by permeation[J]. Separation Science and Technology, 1985, 20(5/6): 445-459. |
25 | Lim Y I, Floquet P, Joulia X, et al. Multiobjective optimization in terms of economics and potential environment impact for process design and analysis in a chemical process simulator[J]. Industrial & Engineering Chemistry Research, 1999, 38(12): 4729-4741. |
26 | 张琳, 胡斌, 王霞, 等. PI中空纤维膜分离模拟燃煤脱硫烟气中的CO2 [J]. 中国电机工程学报, 2017, 37(9): 2637-2644. |
Zhang L, Hu B, Wang X, et al. CO2 separation by PI hollow fiber membrane from desulfurized flue gas[J]. Proceedings of the CSEE, 2017, 37(9): 2637-2644. | |
27 | Black J. Cost and performance comparison baseline for fossil energy plants[R]. Washington, DC, USA: U.S. Department of Energy, 2010. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||