CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5275-5288.DOI: 10.11949/0438-1157.20221283
• Reviews and monographs • Previous Articles Next Articles
Liang XIANG(), Zihao ZHONG, Yuanhai SU()
Received:
2022-09-26
Revised:
2022-11-30
Online:
2023-01-17
Published:
2022-12-05
Contact:
Yuanhai SU
通讯作者:
苏远海
作者简介:
向亮(1992—),男,博士研究生,018110210022@sjtu.edu.cn
基金资助:
CLC Number:
Liang XIANG, Zihao ZHONG, Yuanhai SU. Advances on continuous synthesis of topological polymers in microreactors[J]. CIESC Journal, 2022, 73(12): 5275-5288.
向亮, 钟子豪, 苏远海. 微反应器内连续制备拓扑结构聚合物的研究进展[J]. 化工学报, 2022, 73(12): 5275-5288.
结构 | 分类 |
---|---|
一级结构 Functionality (单体与功能基团) | |
二级结构 Composition Sequence (组成序列) | |
三级结构 Topology (拓扑) |
Table 1 Categories of polymer chain architectures[3]
结构 | 分类 |
---|---|
一级结构 Functionality (单体与功能基团) | |
二级结构 Composition Sequence (组成序列) | |
三级结构 Topology (拓扑) |
Fig.3 (a) Computer-aided droplet-flow setup for photopolymerization; (b) Process for the synthesis of gradient copolymers via the droplet-flow photopolymerization based on the monomer diffusion[64]
Fig.5 Schematic overview of the cascade microreactor system for the continuous synthesis of stimuli-responsive star polymers, and the products were used to support the Au catalyst[78]
13 | Costello P A, Martin I K, Slark A T, et al. Branched methacrylate copolymers from multifunctional monomers: chemical composition and physical architecture distributions[J]. Polymer, 2002, 43(2): 245-254. |
14 | And R B, Sherrington D C. Facile synthesis of branched poly(vinyl alcohol)s[J]. Macromolecules, 2006, 39(16): 5230-5237. |
15 | Wang R, Luo Y W, Li B G, et al. Modeling of branching and gelation in RAFT copolymerization of vinyl/divinyl systems[J]. Macromolecules, 2009, 42(1): 85-94. |
16 | Wang D M, Li X H, Wang W J, et al. Kinetics and modeling of semi-batch RAFT copolymerization with hyperbranching[J]. Macromolecules, 2011, 45(1): 28-38. |
17 | Liang S N, Li X H, Wang W J, et al. Toward understanding of branching in RAFT copolymerization of methyl methacrylate through a cleavable dimethacrylate[J]. Macromolecules, 2016, 49(3): 752-759. |
18 | Wang W J, Wang D M, Li B G, et al. Synthesis and characterization of hyperbranched polyacrylamide using semibatch reversible addition—fragmentation chain transfer (RAFT) polymerization[J]. Macromolecules, 2010, 43(9): 4062-4069. |
19 | Kerr A, Hartlieb M, Sanchis J, et al. Complex multiblock bottle-brush architectures by RAFT polymerization[J]. Chemical Communications, 2017, 53(87): 11901-11904. |
20 | Jia Y Y, Wang S, Wang W J, et al. Design and synthesis of a well-controlled mechanoluminescent polymer system based on fluorescence resonance energy transfer with spiropyran as a force-activated acceptor and nitrobenzoxadiazole as a fluorescent donor[J]. Macromolecules, 2019, 52(20): 7920-7928. |
21 | Josse T, Winter J D, Gerbaux P, et al. Cyclic polymers by ring‐closure strategies[J]. Angewandte Chemie International Edition, 2016, 55(45): 13944-13958. |
22 | He T, Zheng G H, Pan C Y. Synthesis of cyclic polymers and block copolymers by monomer insertion into cyclic initiator by a radical mechanism[J]. Macromolecules, 2003, 36(16): 5960-5966. |
23 | Zhang Y N, Wang G W, Huang J L. Preparation of amphiphilic poly(ethylene oxide)-block-polystyrene macrocycles via glaser coupling reaction under CuBr/pyridine system[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2011, 49(22): 4766-4770. |
24 | Voit B. New developments in hyperbranched polymers[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2000, 38(14): 2505-2525. |
25 | England R M, Rimmer S. Hyper/highly-branched polymers by radical polymerisations[J]. Polymer Chemistry, 2010, 1(10): 1533-1544. |
26 | Voit B I, Lederer A. Hyperbranched and highly branched polymer architectures—synthetic strategies and major characterization aspects[J]. Chemical Reviews, 2009, 109(11): 5924-5973. |
27 | Ren J M, Mckenzie T G, Fu Q, et al. Star polymers[J]. Chemical Reviews, 2016, 116(12): 6743-6836. |
28 | Gao Y S, Zhou D Z, Lyu J, et al. Complex polymer architectures through free-radical polymerization of multivinyl monomers[J]. Nature Reviews Chemistry, 2020, 4(4): 194-212. |
29 | Zheng Y, Li S, Weng Z, et al. Hyperbranched polymers: advances from synthesis to applications[J]. Chemical Society Reviews, 2015, 44(12): 4091-4130. |
30 | Yamamoto T, Tezuka Y. Cyclic polymers revealing topology effects upon self-assemblies, dynamics and responses[J]. Soft Matter, 2015, 11(38): 7458-7468. |
31 | Zhu X, Zhou N C, Zhang Z B, et al. Cyclic polymers with pendent carbazole units: enhanced fluorescence and redox behavior[J]. Angewandte Chemie International Edition, 2011, 50(29): 6615-6618. |
32 | Shin E J, Jeong W, Brown H A, et al. Crystallization of cyclic polymers: synthesis and crystallization behavior of high molecular weight cyclic poly(ε-caprolactone)s[J]. Macromolecules, 2011, 44(8): 2773-2779. |
33 | Laurent B A, Grayson S M. Synthetic approaches for the preparation of cyclic polymers[J]. Chemical Society Reviews, 2009, 38(8): 2202-2213. |
34 | Hu J, Liu S. Topological effects of macrocyclic polymers: from precise synthesis to biomedical applications[J]. Science China Chemistry, 2017, 60(9): 1153-1161. |
35 | 骆广生, 王凯, 王佩坚, 等. 微反应器内聚合物合成研究进展[J]. 化工学报, 2014, 65(7): 2563-2573. |
Luo G S, Wang K, Wang P J, et al. Advances in polymer synthesis in microreactors[J]. CIESC Journal, 2014, 65(7): 2563-2573. | |
36 | Zhang J S, Wang K, Teixeira A R, et al. Design and scaling up of microchemical systems: a review[J]. Annual Review of Chemical and Biomolecular Engineering, 2017, 8(1): 285-305. |
37 | Jensen K F. Flow chemistry-microreaction technology comes of age[J]. AIChE Journal, 2017, 63(3): 858-869. |
38 | 刘兆利, 张鹏飞. 微反应器在化学化工领域中的应用[J]. 化工进展, 2016, 35(1): 10-17. |
Liu Z L, Zhang P F. Applications of microreactor in chemistry and chemical engineering[J]. Chemical Industry and Engineering Progress, 2016, 35(1): 10-17. | |
39 | Qiu M, Zha L, Song Y, et al. Numbering-up of capillary microreactors for homogeneous processes and its application in free radical polymerization[J]. Reaction Chemistry & Engineering, 2019, 4(2): 351-361. |
40 | Su Y, Kuijpers K, Hessel V, et al. A convenient numbering-up strategy for the scale-up of gas-liquid photoredox catalysis in flow[J]. Reaction Chemistry & Engineering, 2016, 1(1): 73-81. |
41 | Geacintov C, Smid J, Szwarc M. Kinetics of anionic polymerization of styrene in tetrahydrofuran[J]. Journal of the American Chemical Society, 1962, 84(13): 2508-2514. |
42 | Iwasaki T, Yoshida J. Free radical polymerization in microreactors. Significant improvement in molecular weight distribution control[J]. Macromolecules, 2005, 38(4): 1159-1163. |
43 | Kessler D, Löwe H, Theato P. Synthesis of defined poly(silsesquioxane)s: fast polycondensation of trialkoxysilanes in a continuous‐flow microreactor[J]. Macromolecular Chemistry and Physics, 2009, 210(10): 807-813. |
44 | Zha L, Shang M J, Qiu M, et al. Process intensification of mixing and chemical modification for polymer solutions in microreactors based on gas-liquid two-phase flow[J]. Chemical Engineering Science, 2019, 195: 62-73. |
45 | Nagaki A, Miyazaki A, Yoshida J. Synthesis of polystyrenes-poly(alkyl methacrylates) block copolymers via anionic polymerization using an integrated flow microreactor system[J]. Macromolecules, 2010, 43(20): 8424-8429. |
46 | Chen Y, Dong P F, Xu J H, et al. Microfluidic generation of multicolor quantum-dot-encoded core-shell microparticles with precise coding and enhanced stability[J]. Langmuir, 2014, 30(28): 8538-8542. |
47 | Song Y, Shang M J, Li J G, et al. Continuous and controllable synthesis of MnO2/PPy composites with core–shell structures for supercapacitors[J]. Chemical Engineering Journal, 2021, 405: 127059. |
1 | 李伯耿, 罗英武, 王文俊, 等. 聚合物产品工程: 面向高性能高分子材料的化学工程新拓展[J]. 中国科学: 化学, 2014, 44(9): 1461-1468. |
Li B G, Luo Y W, Wang W J, et al. Polymer product engineering: an emerging discipline of chemical engineering for high performance polymer materials[J]. Scientia Sinica Chimica, 2014, 44(9): 1461-1468. | |
2 | 李伯耿, 罗英武. 产品工程学: 化学反应工程的新拓展[J]. 化工进展, 2005, 24(4): 337-340. |
Li B G, Luo Y W. Production engineering: new developing space for chemical reaction engineering[J]. Chemical Industry and Engineering Progress, 2005, 24(4): 337-340. | |
3 | Matyjaszewski K. Architecturally complex polymers with controlled heterogeneity[J]. Science, 2011, 333(6046): 1104-1105. |
4 | 凌君, 李瑶, 徐志康. 聚合物拓扑结构的分类及正名探讨[J]. 高分子通报, 2015(8): 106-111. |
Ling J, Li Y, Xu Z K. Classification and terminology of polymer topologies[J]. Polymer Bulletin, 2015(8): 106-111. | |
5 | Hawker C J, Lee R, Frechet J M J. One-step synthesis of hyperbranched dendritic polyesters[J]. Journal of the American Chemical Society, 1991, 113(12): 4583-4588. |
6 | Emrick T, Chang H, Frechet J M J. An A2+B3 approach to hyperbranched aliphatic polyethers containing chain end epoxy substituents[J]. Macromolecules, 1999, 32(19): 6380-6382. |
7 | Landin D T, Macosko C W. Cyclization and reduced reactivity of pendant vinyls during the copolymerization of methyl methacrylate and ethylene glycol dimethacrylate[J]. Macromolecules, 1988, 21(3): 846-851. |
8 | Fréchet J M, Henmi M, Gitsov I, et al. Self-condensing vinyl polymerization: an approach to dendritic materials[J]. Science, 1995, 269(5227): 1080-1083. |
9 | Slark A T, Sherrington D C, Titterton A, et al. Branched methacrylate copolymers from multifunctional comonomers: the effect of multifunctional monomer functionality on polymer architecture and properties[J]. Journal of Materials Chemistry, 2003, 13(11): 2711-2720. |
10 | Baudry R, Sherrington D C. Synthesis of highly branched poly(methyl methacrylate)s using the“strathclyde methodology”in aqueous emulsion[J]. Macromolecules, 2006, 39(4): 1455-1460. |
11 | Jiang L, Huang W Y, Xue X Q, et al. Radical polymerization in the presence of chain transfer monomer: an approach to branched vinyl polymers[J]. Macromolecules, 2012, 45(10): 4092-4100. |
12 | Huang W Y, Li J T, Wu H Y, et al. Preparation of branched polystyrene by free radical emulsion polymerization in the presence of functional monomer[J]. Materials Research Innovations, 2018, 22(6): 379-384. |
48 | Rosenfeld C, Serra C, Brochon C, et al. High-temperature nitroxide-mediated radical polymerization in a continuous microtube reactor: towards a better control of the polymerization reaction[J]. Chemical Engineering Science, 2007, 62(18/19/20): 5245-5250. |
49 | Rosenfeld C, Serra C, Brochon C, et al. Use of micromixers to control the molecular weight distribution in continuous two-stage nitroxide-mediated copolymerizations[J]. Chemical Engineering Journal, 2008, 135: S242-S246. |
50 | Fukuyama T, Kajihara Y, Ryu I, et al. Nitroxide-mediated polymerization of styrene, butyl acrylate, or methyl methacrylate by microflow reactor technology[J]. Synthesis, 2012, 44(16): 2555-2559. |
51 | Shen Y Q, Zhu S P. Continuous atom transfer radical block copolymerization of methacrylates[J]. AIChE Journal, 2002, 48(11): 2609-2619. |
52 | Hornung C H, Guerrero-Sanchez C, Brasholz M, et al. Controlled RAFT polymerization in a continuous flow microreactor[J]. Organic Process Research & Development, 2011, 15(3): 593-601. |
53 | Hornung C H, von Känel K, Martinez-Botella I, et al. Continuous flow aminolysis of RAFT polymers using multistep processing and inline analysis[J]. Macromolecules, 2014, 47(23): 8203-8213. |
54 | Li Z, Chen W J, Zhang Z B, et al. A surfactant-free emulsion RAFT polymerization of methyl methacrylate in a continuous tubular reactor[J]. Polymer Chemistry, 2015, 6(11): 1937-1943. |
55 | Li Z, Chen W J, Zhang L F, et al. Fast RAFT aqueous polymerization in a continuous tubular reactor: consecutive synthesis of a double hydrophilic block copolymer[J]. Polymer Chemistry, 2015, 6(28): 5030-5035. |
56 | Peng J Y, Tian C, Zhang L F, et al. The in situ formation of nanoparticles via RAFT polymerization-induced self-assembly in a continuous tubular reactor[J]. Polymer Chemistry, 2017, 8(9): 1495-1506. |
57 | Peng J Y, Xu Q H, Ni Y Y, et al. Visible light controlled aqueous RAFT continuous flow polymerization with oxygen tolerance[J]. Polymer Chemistry, 2019, 10(16): 2064-2072. |
58 | Zaquen N, Kadir A M N B P H A, Iasa A, et al. Rapid oxygen tolerant aqueous RAFT photopolymerization in continuous flow reactors[J]. Macromolecules, 2019, 52(4): 1609-1619. |
59 | Baeten E, Haven J J, Junkers T. RAFT multiblock reactor telescoping: from monomers to tetrablock copolymers in a continuous multistage reactor cascade[J]. Polymer Chemistry, 2017, 8(25): 3815-3824. |
60 | Kuroki A, Martinez-Botella I, Hornung C H, et al. Looped flow RAFT polymerization for multiblock copolymer synthesis[J]. Polymer Chemistry, 2017, 8(21): 3249-3254. |
61 | Song J, Zhang S, Wang K, et al. Synthesis of million molecular weight polyacrylamide with droplet flow microreactors[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 98: 78-84. |
62 | Mastan E, He J P. Continuous production of multiblock copolymers in a loop reactor: when living polymerization meets flow chemistry[J]. Macromolecules, 2017, 50(23): 9173-9187. |
63 | Chen M, Zhou Y, Han S T, et al. Facile synthesis of gradient copolymers enabled by droplet-flow photo-controlled reversible deactivation radical polymerization[J]. Science China Chemistry, 2021, 64(5): 844-851. |
64 | 周杨, 全钦之, 陈茂. 流动化学用于可逆失活自由基聚合的研究进展[J]. 功能高分子学报, 2022, 35(3): 203-220. |
Zhou Y, Quan Q Z, Chen M. Recent developments of reversible deactivation radical polymerization in flow chemistry[J]. Journal of Functional Polymers, 2022, 35(3): 203-220. | |
65 | Leibfarth F A, Johnson J A, Jamison T F. Scalable synthesis of sequence-defined, unimolecular macromolecules by Flow-IEG[J]. Proceedings of the National Academy of Sciences, 2015, 112(34): 10617-10622. |
66 | Wicker A C, Leibfarth F A, Jamison T F. Flow-IEG enables programmable thermodynamic properties in sequence-defined unimolecular macromolecules[J]. Polymer Chemistry, 2017, 8(37): 5786-5794. |
67 | Huang Z, Corrigan N, Lin S, et al. Upscaling single unit monomer insertion to synthesize discrete oligomers[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2019, 57(18): 1947-1955. |
68 | Isaure F, Cormack P A G, Sherrington D C. Facile synthesis of branched water-soluble poly(dimethylacrylamide)s in conventional and parallel reactors using free radical polymerisation[J]. Reactive and Functional Polymers, 2006, 66(1): 65-79. |
69 | Liu S, Chang C H. High rate convergent synthesis and deposition of polyamide dendrimers using a continuous‐flow microreactor[J]. Chemical Engineering & Technology, 2010, 30(3): 334-340. |
70 | Wilms D, Nieberle J, Klos J, et al. Synthesis of hyperbranched polyglycerol in a continuous flow microreactor[J]. Chemical Engineering & Technology, 2007, 30(11): 1519-1524. |
71 | Parida D, Serra C A, Garg D K, et al. Coil flow inversion as a route to control polymerization in microreactors[J]. Macromolecules, 2014, 47(10): 3282-3287. |
72 | Eckardt O, Wenn B, Biehl P, et al. Facile photo-flow synthesis of branched poly(butyl acrylate)s[J]. Reaction Chemistry & Engineering, 2017, 2(4): 479-486. |
73 | Xiang L, Song Y, Qiu M, et al. Synthesis of branched poly(butyl acrylate) using the strathclyde method in continuous-flow microreactors[J]. Industrial & Engineering Chemistry Research, 2019, 58(47): 21312-21322. |
74 | Rong L H, Cheng X, Ge J, et al. Synthesis of hyperbranched polymers via PET-RAFT self‐condensing vinyl polymerization in a flow reactor[J]. Macromolecular Chemistry and Physics, 2022, 223(1): 2100342. |
75 | Wenn B, Martens A C, Chuang Y M, et al. Efficient multiblock star polymer synthesis from photo-induced copper-mediated polymerization with up to 21 arms[J]. Polymer Chemistry, 2016, 7(15): 2720-2727. |
76 | Yin Y Y. Functionalization of the SiO2 microparticle surface by dual-phase ATRP in flow reactor[D]. Cleveland: Case Western Reserve University, 2018. |
77 | Vrijsen J H, Osiro M C, Gruber J, et al. Continuous flow synthesis of core cross-linked star polymers via photo-induced copper mediated polymerization[J]. Polymer Chemistry, 2019, 10(13): 1591-1598. |
78 | Xiang L, Qiu M, Shang M J, et al. Continuous synthesis of star polymers with RAFT polymerization in cascade microreactor systems[J]. Polymer, 2021, 222: 123669. |
79 | Xiang L, Zhong Z H, Shang M J, et al. Microflow synthesis of stimuli-responsive star polymers and its application on catalytic reduction[J]. Polymer, 2022, 238: 124383. |
80 | Walsh D J, Dutta S, Sing C E, et al. Engineering of molecular geometry in bottlebrush polymers[J]. Macromolecules, 2019, 52(13): 4847-4857. |
81 | Corrigan N, Trujillo F J, Xu J T, et al. Divergent synthesis of graft and branched copolymers through spatially controlled photopolymerization in flow reactors[J]. Macromolecules, 2021, 54(7): 3430-3446. |
82 | Chen K R, Han W J, Hu X, et al. Microreactor-based chemo-enzymatic ROP-ROMP platform for continuous flow synthesis of bottlebrush polymers[J]. Chemical Engineering Journal, 2022, 437: 135284. |
83 | Sun P, Liu J A, Zhang Z B, et al. Scalable preparation of cyclic polymers by the ring-closure method assisted by the continuous-flow technique[J]. Polymer Chemistry, 2016, 7(12): 2239-2244. |
84 | Baeten E, Rubens M, Wuest K N R, et al. Photo-induced ring-closure via a looped flow reactor[J]. Reaction Chemistry & Engineering, 2017, 2(6): 826-829. |
85 | van de Walle M, de Braycker K, Blinco J P, et al. Two colour photoflow chemistry for macromolecular design[J]. Angewandte Chemie International Edition, 2020, 59(33): 14143-14147. |
86 | Shen H Y, Wang G W. A versatile flash cyclization technique assisted by microreactor[J]. Polymer Chemistry, 2017, 8(36): 5554-5560. |
87 | Xiang L, Zhong Z H, Liu S E, et al. Kinetic modeling study on the preparation of branched polymers with various feeding strategies[J]. Industrial & Engineering Chemistry Research, 2022, 61(43): 15917-15932. |
88 | Lauterbach F, Rubens M, Abetz V, et al. Ultrafast photoRAFT block copolymerization of isoprene and styrene facilitated through continuous-flow operation[J]. Angewandte Chemie International Edition, 2018, 57(43): 14260-14264. |
89 | Derboven P, van Steenberge P H M, Vandenbergh J, et al. Improved livingness and control over branching in RAFT polymerization of acrylates: could microflow synthesis make the difference?[J]. Macromolecular Rapid Communications, 2015, 36(24): 2149-2155. |
90 | Zhou Y N, Luo Z H. State-of-the-art and progress in method of moments for the model-based reversible-deactivation radical polymerization[J]. Macromolecular Reaction Engineering, 2016, 10(6): 516-534. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[3] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[4] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[5] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[6] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[7] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[8] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[9] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
[10] | Xueting ZHANG, Jijiang HU, Jing ZHAO, Bogeng LI. Preparation of high molecular weight polypropylene glycol in microchannel reactor [J]. CIESC Journal, 2023, 74(3): 1343-1351. |
[11] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
[12] | Han HU, Liang YANG, Chunxiao LI, Daoping LIU. Kinetics of methane storage in the natural tobacco leaching filtrate in the hydrate form [J]. CIESC Journal, 2023, 74(3): 1313-1321. |
[13] | Qingyun YANG, Qingsong LI, Zeming CHEN, Jing DENG, Yuying LI, Fan YANG, Guoyuan CHEN, Guoxin LI. Degradation of methylparaben by UV/PMS, UV/PDS and UV/SPC process [J]. CIESC Journal, 2023, 74(3): 1322-1331. |
[14] | Yue HU, Shoujun MA, Xigao JIAN, Zhihuan WENG. Study on curing phthalonitrile resin with novel poly(phthalazinone ether nitrile) [J]. CIESC Journal, 2023, 74(2): 871-882. |
[15] | Zhiyuan JIN, Guorong SHAN, Pengju PAN. Preparation and heat and salt resistance of AM/AMPS/SSS terpolymer [J]. CIESC Journal, 2023, 74(2): 916-923. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 746
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 928
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||