CIESC Journal ›› 2022, Vol. 73 ›› Issue (6): 2698-2707.DOI: 10.11949/0438-1157.20220089
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Jing WAN1(),Lin ZHANG2,Yachao FAN2,Xiemin LIU1,Peicheng LUO3,Feng ZHANG1(),Zhibing ZHANG1
Received:
2022-01-17
Revised:
2022-03-31
Online:
2022-06-30
Published:
2022-06-05
Contact:
Feng ZHANG
万景1(),张霖2,樊亚超2,刘勰民1,骆培成3,张锋1(),张志炳1
通讯作者:
张锋
作者简介:
万景(1998—),男,硕士研究生,基金资助:
CLC Number:
Jing WAN, Lin ZHANG, Yachao FAN, Xiemin LIU, Peicheng LUO, Feng ZHANG, Zhibing ZHANG. Bioreactor scale-up simulation and experimental study based on mesoscale PBM model[J]. CIESC Journal, 2022, 73(6): 2698-2707.
万景, 张霖, 樊亚超, 刘勰民, 骆培成, 张锋, 张志炳. 基于介尺度PBM模型的生物反应器放大模拟及实验研究[J]. 化工学报, 2022, 73(6): 2698-2707.
Add to citation manager EndNote|Ris|BibTeX
聚并模型简称 | 聚并模型 |
---|---|
C1 | Luo |
C2 | Mc-Luo |
Table 1 Details of the coalescence model studied in this paper
聚并模型简称 | 聚并模型 |
---|---|
C1 | Luo |
C2 | Mc-Luo |
破碎模型简称 | 碰撞频率 |
---|---|
B1 | ω1 |
B2 | ω2+ω3 |
B3 | ω2+ω4 |
B4 | ω5 |
Table 2 Details of the crushing model studied in this paper
破碎模型简称 | 碰撞频率 |
---|---|
B1 | ω1 |
B2 | ω2+ω3 |
B3 | ω2+ω4 |
B4 | ω5 |
试验次数 | 传质系数kLa | ||
---|---|---|---|
200 r/min | 300 r/min | 400 r/min | |
第一次 | 0.0155 | 0.0242 | 0.0384 |
第二次 | 0.0153 | 0.0237 | 0.0378 |
第三次 | 0.0158 | 0.0244 | 0.0387 |
Table 3 kLa changes with speed under different number of tests
试验次数 | 传质系数kLa | ||
---|---|---|---|
200 r/min | 300 r/min | 400 r/min | |
第一次 | 0.0155 | 0.0242 | 0.0384 |
第二次 | 0.0153 | 0.0237 | 0.0378 |
第三次 | 0.0158 | 0.0244 | 0.0387 |
8 | Yang N, Xiao Q. A mesoscale approach for population balance modeling of bubble size distribution in bubble column reactors[J]. Chemical Engineering Science, 2017, 170: 241-250. |
9 | 肖颀, 杨宁. 基于EMMS模型的搅拌釜内气液两相流数值模拟[J]. 化工学报, 2016, 67(7): 2732-2739. |
Xiao Q, Yang N. Numerical simulation of gas-liquid flow in stirred tanks based on EMMS model[J]. CIESC Journal, 2016, 67(7): 2732-2739. | |
10 | Luo H A, Svendsen H F. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233. |
11 | Han L C, Luo H A, Liu Y J. A theoretical model for droplet breakup in turbulent dispersions[J]. Chemical Engineering Science, 2011, 66(4): 766-776. |
12 | Han L C, Gong S G, Li Y Q, et al. Influence of energy spectrum distribution on drop breakage in turbulent flows[J]. Chemical Engineering Science, 2014, 117: 55-70. |
13 | Han L C, Gong S G, Ding Y W, et al. Consideration of low viscous droplet breakage in the framework of the wide energy spectrum and the multiple fragments[J]. AIChE Journal, 2015, 61(7): 2147-2168. |
14 | Solsvik J, Tangen S, Jakobsen H A. On the constitutive equations for fluid particle breakage[J]. Reviews in Chemical Engineering, 2013, 29(5): 241-356. |
15 | Shi W B, Yang X G, Sommerfeld M, et al. Modelling of mass transfer for gas-liquid two-phase flow in bubble column reactor with a bubble breakage model considering bubble-induced turbulence[J]. Chemical Engineering Journal, 2019, 371: 470-485. |
16 | Luo P, Wu J, Pan X, et al. Gas-liquid mass transfer behavior in a surface-aerated vessel stirred by a novel long-short blades agitator[J]. AIChE Journal, 2016, 62(4): 1322-1330. |
17 | Martínez-Delgadillo S A, Alonzo-Garcia A, Mendoza-Escamilla V X, et al. Analysis of the turbulent flow and trailing vortices induced by new design grooved blade impellers in a baffled tank[J]. Chemical Engineering Journal, 2019, 358: 225-235. |
18 | Mule G M, Kulkarni A A. Mixing of medium viscosity liquids in a stirred tank with fractal impeller[J]. Theoretical Foundations of Chemical Engineering, 2016, 50(6): 914-921. |
1 | Straathof A J J, Wahl S A, Benjamin K R, et al. Grand research challenges for sustainable industrial biotechnology[J]. Trends in Biotechnology, 2019, 37(10): 1042-1050. |
2 | Amer B, Baidoo E E K. Omics-driven biotechnology for industrial applications[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 613307. |
19 | Gaddis E S. Mass transfer in gas-liquid contactors[J]. Chemical Engineering and Processing: Process Intensification, 1999, 38(4/5/6): 503-510. |
20 | Montante G, Horn D, Paglianti A. Gas-liquid flow and bubble size distribution in stirred tanks[J]. Chemical Engineering Science, 2008, 63(8): 2107-2118. |
21 | Khopkar A R, Rammohan A R, Ranade V V, et al. Gas-liquid flow generated by a Rushton turbine in stirred vessel: CARPT/CT measurements and CFD simulations[J]. Chemical Engineering Science, 2005, 60(8/9): 2215-2229. |
22 | Sanyal J, Vásquez S, Roy S, et al. Numerical simulation of gas-liquid dynamics in cylindrical bubble column reactors[J]. Chemical Engineering Science, 1999, 54(21): 5071-5083. |
23 | van Baten J M, Krishna R. CFD simulations of a bubble column operating in the homogeneous and heterogeneous flow regimes[J]. Chemical Engineering & Technology, 2002, 25(11): 1081-1086. |
24 | Schiller L, Naumann A. A drag coefficient correlation[J]. Zeitschrift des Vereins Deutscher Ingenieure, 1935, 77: 318-320. |
25 | Orszag S A, Yakhot V, Flannery W S, et al. Renormalization group modeling and turbulence simulations[C]// Proceedings of International Conference on Near-Wall Turbulent Flows. 1993. |
26 | Prince M J, Blanch H W. Bubble coalescence and break-up in air-sparged bubble columns[J]. AIChE Journal, 1990, 36(10): 1485-1499. |
27 | Wang T F, Wang J F, Jin Y. A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow[J]. Chemical Engineering Science, 2003, 58(20): 4629-4637. |
28 | Garcia-Ochoa F, Gomez E. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview[J]. Biotechnology Advances, 2009, 27(2): 153-176. |
29 | Danckwerts P V. Significance of liquid-film coefficients in gas absorption[M]//Insights Into Chemical Engineering. Amsterdam: Elsevier, 1981: 51-75. |
30 | Kerdouss F, Bannari A, Proulx P, et al. Two-phase mass transfer coefficient prediction in stirred vessel with a CFD model[J]. Computers & Chemical Engineering, 2008, 32(8): 1943-1955. |
31 | Xiao H, Geng S J, Chen A Q, et al. Bubble formation in continuous liquid phase under industrial jetting conditions[J]. Chemical Engineering Science, 2019, 200: 214-224. |
3 | Maluta F, Paglianti A, Montante G. Modelling of biohydrogen production in stirred fermenters by computational fluid dynamics[J]. Process Safety and Environmental Protection, 2019, 125: 342-357. |
4 | Wang H N, Jia X Q, Wang X, et al. CFD modeling of hydrodynamic characteristics of a gas-liquid two-phase stirred tank[J]. Applied Mathematical Modelling, 2014, 38(1): 63-92. |
5 | Shen X Z, Hibiki T. Bubble coalescence and breakup model evaluation and development for two-phase bubbly flows[J]. International Journal of Multiphase Flow, 2018, 109: 131-149. |
6 | Zhang X B, Luo Z H. Effects of bubble coalescence and breakup models on the simulation of bubble columns[J]. Chemical Engineering Science, 2020, 226: 115850. |
7 | Luo H. Coalescence, breakup and liquid circulation in bubble column reactors[D]. Trondheim: Norwegian Institute of Technology, 1993. |
[1] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[2] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[3] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[4] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[5] | Linjing YUE, Yihan LIAO, Yuan XUE, Xuejie LI, Yuxing LI, Cuiwei LIU. Study on influence of pit defects on cavitation flow characteristics of throat of thick orifice plates [J]. CIESC Journal, 2023, 74(8): 3292-3308. |
[6] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[7] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[8] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[9] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[10] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[11] | Daoyin LIU, Bingqi CHEN, Zuyang ZHANG, Yan WU. Effect of agglomerate structure on drag force by numerical simulation [J]. CIESC Journal, 2023, 74(6): 2351-2362. |
[12] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[13] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[14] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[15] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||