1 |
Giles J. How to survive a warming world[J]. Nature, 2007, 446(7137): 716-717.
|
2 |
Keith D W. Why capture CO2 from the atmosphere? [J]. Science, 2009, 325(5948): 1654-1655.
|
3 |
Haszeldine R S. Carbon capture and storage: how green can black be? [J]. Science, 2009, 325(5948): 1647-1652.
|
4 |
Gao W L, Liang S Y, Wang R J, et al. Industrial carbon dioxide capture and utilization: state of the art and future challenges[J]. Chemical Society Reviews, 2020, 49(23): 8584-8686.
|
5 |
Bernardo P, Drioli E, Golemme G. Membrane gas separation: a review/state of the art[J]. Industrial & Engineering Chemistry Research, 2009, 48(10): 4638-4663.
|
6 |
Baker R W, Low B T. Gas separation membrane materials: a perspective[J]. Macromolecules, 2014, 47(20): 6999-7013.
|
7 |
Baker R. Future directions of membrane gas-separation technology[J]. Membrane Technology, 2001, 2001(138): 5-10.
|
8 |
Yong W F, Zhang H. Recent advances in polymer blend membranes for gas separation and pervaporation[J]. Progress in Materials Science, 2021, 116: 100713.
|
9 |
Qian Q H, Asinger P A, Lee M J, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266.
|
10 |
Wang S F, Li X Q, Wu H, et al. Advances in high permeability polymer-based membrane materials for CO2 separations[J]. Energy & Environmental Science, 2016, 9(6): 1863-1890.
|
11 |
Chuah C Y, Goh K, Yang Y Q, et al. Harnessing filler materials for enhancing biogas separation membranes[J]. Chemical Reviews, 2018, 118(18): 8655-8769.
|
12 |
Han Y, Ho W S W. Polymeric membranes for CO2 separation and capture[J]. Journal of Membrane Science, 2021, 628: 119244.
|
13 |
He G W, Huang S Q, Villalobos L F, et al. High-permeance polymer-functionalized single-layer graphene membranes that surpass the postcombustion carbon capture target[J]. Energy & Environmental Science, 2019, 12(11): 3305-3312.
|
14 |
Yin J, Zhang C C, Yu Y F, et al. Tuning the microstructure of crosslinked poly(ionic liquid) membranes and gels via a multicomponent reaction for improved CO2 capture performance[J]. Journal of Membrane Science, 2020, 593: 117405.
|
15 |
Vakharia V, Salim W, Wu D Z, et al. Scale-up of amine-containing thin-film composite membranes for CO2 capture from flue gas[J]. Journal of Membrane Science, 2018, 555: 379-387.
|
16 |
Stannett V. The transport of gases in synthetic polymeric membranes—an historic perspective[J]. Journal of Membrane Science, 1978, 3(2): 97-115.
|
17 |
van Amerongen G J. The permeability of different rubbers to gases and its relation to diffusivity and solubility[J]. Journal of Applied Physics, 1946, 17(11): 972-985.
|
18 |
Freeman B D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes[J]. Macromolecules, 1999, 32(2): 375-380.
|
19 |
Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. Journal of Membrane Science, 1991, 62(2): 165-185.
|
20 |
Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400.
|
21 |
Noble R D. Analysis of facilitated transport with fixed site carrier membranes[J]. Journal of Membrane Science, 1990, 50(2): 207-214.
|
22 |
Noble R D. Facilitated transport mechanism in fixed site carrier membranes[J]. Journal of Membrane Science, 1991, 60(2/3): 297-306.
|
23 |
Zhang C X, Wang Z, Cai Y, et al. Investigation of gas permeation behavior in facilitated transport membranes: relationship between gas permeance and partial pressure[J]. Chemical Engineering Journal, 2013, 225: 744-751.
|
24 |
Zhang Y H, Ma L, Lv Y Q, et al. Facile manufacture of COF-based mixed matrix membranes for efficient CO2 separation[J]. Chemical Engineering Journal, 2022, 430: 133001.
|
25 |
Zhou F, Tien H N, Xu W L, et al. Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO2-philic agent for highly efficient CO2 capture[J]. Nature Communications, 2017, 8: 2107.
|
26 |
Ying W, Cai J S, Zhou K, et al. Ionic liquid selectively facilitates CO2 transport through graphene oxide membrane[J]. ACS Nano, 2018, 12(6): 5385-5393.
|
27 |
Chen K K, Han Y, Zhang Z E, et al. Enhancing membrane performance for CO2 capture from flue gas with ultrahigh MW polyvinylamine[J]. Journal of Membrane Science, 2021, 628: 119215.
|
28 |
Kim T J, Vrålstad H, Sandru M, et al. Separation performance of PVAm composite membrane for CO2 capture at various pH levels[J]. Journal of Membrane Science, 2013, 428: 218-224.
|
29 |
Jiao C L, Li Z D, Li X X, et al. Improved CO2/N2 separation performance of Pebax composite membrane containing polyethyleneimine functionalized ZIF-8[J]. Separation and Purification Technology, 2021, 259: 118190.
|
30 |
Yu G L, Li Y Q, Wang Z Y, et al. Mixed matrix membranes derived from nanoscale porous organic frameworks for permeable and selective CO2 separation[J]. Journal of Membrane Science, 2019, 591: 117343.
|
31 |
Lee C S, Kang M, Kim K C, et al. In-situ formation of asymmetric thin-film, mixed-matrix membranes with ZIF-8 in dual-functional imidazole-based comb copolymer for high-performance CO2 capture[J]. Journal of Membrane Science, 2022, 642: 119913.
|
32 |
Ding R, Dai Y, Zheng W J, et al. Vesicles-shaped MOF-based mixed matrix membranes with intensified interfacial affinity and CO2 transport freeway[J]. Chemical Engineering Journal, 2021, 414: 128807.
|
33 |
Dong S L, Wang Z, Sheng M L, et al. High-performance multi-layer composite membrane with enhanced interlayer compatibility and surface crosslinking for CO2 separation[J]. Journal of Membrane Science, 2020, 610: 118221.
|
34 |
Sheng M L, Dong S L, Qiao Z H, et al. Large-scale preparation of multilayer composite membranes for post-combustion CO2 capture[J]. Journal of Membrane Science, 2021, 636: 119595.
|
35 |
Karunakaran M, Villalobos L F, Kumar M, et al. Graphene oxide doped ionic liquid ultrathin composite membranes for efficient CO2 capture[J]. Journal of Materials Chemistry A, 2017, 5(2): 649-656.
|
36 |
Guiver M D, Yahia M, Dal-Cin M M, et al. Gas transport in a polymer of intrinsic microporosity (PIM-1) substituted with pseudo-ionic liquid tetrazole-type structures[J]. Macromolecules, 2020, 53(20): 8951-8959.
|
37 |
Liang Y Y, Zhang R Q, Qiao Z H, et al. Regulating interface nucleus growth of CuTCPP membranes via polymer collaboration method[J]. Separation and Purification Technology, 2022, 282: 120045.
|
38 |
Liu N, Cheng J, Hou W, et al. Bottom-up synthesis of two-dimensional composite via CuBDC-ns growth on multilayered MoS2 to boost CO2 permeability and selectivity in Pebax-based mixed matrix membranes[J]. Separation and Purification Technology, 2022, 282: 120007.
|
39 |
Liu N, Cheng J, Hu L Q, et al. Boosting CO2 transport of poly (ethylene oxide) membranes by hollow Rubik-like “expressway” channels with anion pillared hybrid ultramicroporous materials[J]. Chemical Engineering Journal, 2022, 427: 130845.
|
40 |
Kunalan S, Palanivelu K, Sachin E K, et al. Thin-film hydrogel polymer layered polyvinyltrimethylsilane dual-layer flat-bed composite membrane for CO2 gas separation[J]. Journal of Applied Polymer Science, 2022, 139(17): 52024.
|
41 |
Wang Y H, Zhou Y, Zhang X R, et al. SPEEK membranes by incorporation of NaY zeolite for CO2/N2 separation[J]. Separation and Purification Technology, 2021, 275: 119189.
|
42 |
Wan X Y, Wan T, Cao C C, et al. Accelerating CO2 transport through nanoconfined magnetic ionic liquid in laminated BN membrane[J]. Chemical Engineering Journal, 2021, 423: 130309.
|
43 |
Xu R S, Li L, Wang Y, et al. Thermal crosslinking membrane with enhanced CO2 separation performance derived from nitrile-containing phenolphthalein-based poly(arylene ether ketone)[J]. Journal of Membrane Science, 2021, 637: 119634.
|
44 |
Chen W B, Zhang Z G, Yang C C, et al. PIM-based mixed-matrix membranes containing MOF-801/ionic liquid nanocomposites for enhanced CO2 separation performance[J]. Journal of Membrane Science, 2021, 636: 119581.
|
45 |
Han W Y, Zhang C L, Zhao M, et al. Post-modification of PIM-1 and simultaneously in situ synthesis of porous polymer networks into PIM-1 matrix to enhance CO2 separation performance[J]. Journal of Membrane Science, 2021, 636: 119544.
|
46 |
Cao Q Q, Ding X L, Zhao H Y, et al. Improving gas permeation performance of PDMS by incorporating hollow polyimide nanoparticles with microporous shells and preparing defect-free composite membranes for gas separation[J]. Journal of Membrane Science, 2021, 635: 119508.
|
47 |
Deng G X, Luo J Z, Liu X Y, et al. Fabrication of high-performance mixed-matrix membranes via constructing an in situ crosslinked polymer matrix for gas separations[J]. Separation and Purification Technology, 2021, 271: 118859.
|
48 |
Xu S S, Huang H L, Guo X Y, et al. Highly selective gas transport channels in mixed matrix membranes fabricated by using water-stable Cu-BTC[J]. Separation and Purification Technology, 2021, 257: 117979.
|
49 |
Guo F, Li B Z, Ding R, et al. A novel composite material UiO-66@HNT/Pebax mixed matrix membranes for enhanced CO2/N2 separation[J]. Membranes, 2021, 11(9): 693.
|
50 |
Lee T H, Ozcan A, Park I, et al. Disclosing the role of defect-engineered metal-organic frameworks in mixed matrix membranes for efficient CO2 separation: a joint experimental-computational exploration[J]. Advanced Functional Materials, 2021, 31(38): 2103973.
|
51 |
Kojabad M E, Babaluo A, Tavakoli A. A novel semi-mobile carrier facilitated transport membrane containing aniline/poly (ether-block-amide) for CO2/N2 separation: molecular simulation and experimental study[J]. Separation and Purification Technology, 2021, 266: 118494.
|
52 |
Zhang B, Yang C, Zheng Y F, et al. Modification of CO2-selective mixed matrix membranes by a binary composition of poly(ethylene glycol)/NaY zeolite[J]. Journal of Membrane Science, 2021, 627: 119239.
|
53 |
Fan S T, Qiu Z J, Xu R Y, et al. Ultrahigh carbon dioxide-selective composite membrane containing a γ-CD-MOF layer[J]. ACS Applied Materials & Interfaces, 2021, 13(11): 13034-13043.
|
54 |
Park B J, Kim N U, Lee C S, et al. Synthesis, characterization, and CO2/N2 separation performance of POEM-g-PAcAm comb copolymer membranes[J]. Polymers, 2021, 13(2): 177.
|
55 |
Lu J F, Zhang X, Xu L S, et al. Preparation of amino-functional UiO-66/PIMs mixed matrix membranes with [ b m i m ] [ t f 2 N ] as regulator for enhanced gas separation[J]. Membranes, 2021, 11(1): 35.
|
56 |
Hossain I, Husna A, Chaemchuen S, et al. Cross-linked mixed-matrix membranes using functionalized UiO-66-NH2 into PEG/PPG-PDMS-based rubbery polymer for efficient CO2 separation[J]. ACS Applied Materials & Interfaces, 2020, 12(52): 57916-57931.
|
57 |
Bei P Z, Liu H J, Zhang Y, et al. Preparation and characterization of polyimide membranes modified by a task-specific ionic liquid based on Schiff base for CO2/N2 separation[J]. Environmental Science and Pollution Research International, 2021, 28(1): 738-753.
|
58 |
Kim D, Hossain I, Kim Y, et al. PEG/PPG-PDMS-adamantane-based crosslinked terpolymer using the ROMP technique to prepare a highly permeable and CO2-selective polymer membrane[J]. Polymers, 2020, 12(8): 1674.
|
59 |
Kusuma V A, McNally J S, Baker J S, et al. Cross-linked polyphosphazene blends as robust CO2 separation membranes[J]. ACS Applied Materials & Interfaces, 2020, 12(27): 30787-30795.
|
60 |
Wind J D, Paul D R, Koros W J. Natural gas permeation in polyimide membranes[J]. Journal of Membrane Science, 2004, 228(2): 227-236.
|
61 |
Huo G L, Xu S, Wu L, et al. Structural engineering on copolyimide membranes for improved gas separation performance[J]. Journal of Membrane Science, 2022, 643: 119989.
|
62 |
Zhang C L, Li P, Cao B. Decarboxylation crosslinking of polyimides with high CO2/CH4 separation performance and plasticization resistance[J]. Journal of Membrane Science, 2017, 528: 206-216.
|
63 |
Xie W, Jiao Y, Cai Z L, et al. Highly selective benzimidazole-based polyimide/ionic polyimide membranes for pure- and mixed-gas CO2/CH4 separation[J]. Separation and Purification Technology, 2022, 282: 120091.
|
64 |
Li W X, Peng L F, Li Y H, et al. Hyper cross-linked polymers containing amino group functionalized polyimide mixed matrix membranes for gas separation[J]. Journal of Applied Polymer Science, 2022, 139(20): 52171.
|
65 |
Chen K, Ni L H, Zhang H, et al. Veiled metal organic frameworks nanofillers for mixed matrix membranes with enhanced CO2/CH4 separation performance[J]. Separation and Purification Technology, 2021, 279: 119707.
|
66 |
Chisca S, Bettahalli N M S, Musteata V E, et al. Thermal treatment of hydroxyl functionalized polytriazole and its effect on gas transport: from crosslinking to carbon molecular sieve[J]. Journal of Membrane Science, 2022, 642: 119963.
|
67 |
Zhang Y S, Jia H G, Wang Q J, et al. Optimization of a MOF blended with modified polyimide membrane for high-performance gas separation[J]. Membranes, 2022, 12(1): 34.
|
68 |
Liu F, Zhu W F, Gou M M, et al. Mixed-matrix membranes based on Li1.6Mn1.6O4 (LMO) ultrathin nanosheet for high-performance CO2 separation[J]. Journal of the Chinese Chemical Society, 2022, 69(2): 289-300.
|
69 |
He L, Lu Y H, Xiao G Y, et al. Phthalide-containing poly(ether-imide)s based thermal rearrangement membranes for gas separation application[J]. RSC Advances, 2022, 12(2): 728-742.
|
70 |
Shabani F, Aroon M A, Matsuura T, et al. CO2/CH4 separation properties of PES mixed matrix membranes containing Fullerene-MWCNTs hybrids[J]. Separation and Purification Technology, 2021, 277: 119636.
|
71 |
Ch'ng C W M, Yeong Y F, Jusoh N, et al. High performance membranes containing zeolitic imidazolate framework-8 and polysulfone for CO2 removal from CH4 [J]. Journal of Chemical Technology & Biotechnology, 2022, 97(4): 995-1005.
|
72 |
Lv X, Huang L, Ding S Y, et al. Mixed matrix membranes comprising dual-facilitated bio-inspired filler for enhancing CO2 separation[J]. Separation and Purification Technology, 2021, 276: 119347.
|
73 |
Regmi C, Ashtiani S, Hrdlička Z, et al. CO2/CH4 and H2/CH4 gas separation performance of CTA-TNT@CNT hybrid mixed matrix membranes[J]. Membranes, 2021, 11(11): 862.
|
74 |
Zhang Q, Zhou M, Liu X F, et al. Pebax/two-dimensional MFI nanosheets mixed-matrix membranes for enhanced CO2 separation[J]. Journal of Membrane Science, 2021, 636: 119612.
|
75 |
Wang X L, Wu L, Li N W, et al. Sealing Tröger base/ZIF-8 mixed matrix membranes defects for improved gas separation performance[J]. Journal of Membrane Science, 2021, 636: 119582.
|
76 |
Xu S, Ren X L, Zhao N, et al. Self-crosslinking of bromomethylated 6FDA-DAM polyimide for gas separations[J]. Journal of Membrane Science, 2021, 636: 119534.
|
77 |
Fan W D, Ying Y P, Peh S B, et al. Multivariate polycrystalline metal-organic framework membranes for CO2/CH4 separation[J]. Journal of the American Chemical Society, 2021, 143(42): 17716-17723.
|
78 |
Regmi C, Ashtiani S, Sofer Z, et al. Improved CO2/CH4 separation properties of cellulose triacetate mixed-matrix membranes with CeO2@GO hybrid fillers[J]. Membranes, 2021, 11(10): 777.
|
79 |
Zhao X N, Liu W, Liu X F, et al. Mixed matrix membranes incorporated with aminosilane-functionalized SAPO-34 for upgrading CO2/CH4 separation performances[J]. Industrial & Engineering Chemistry Research, 2021, 60(38): 13927-13937.
|
80 |
Hu L Q, Cheng J, Li Y N, et al. Composites of ionic liquid and amine-modified SAPO 34 improve CO2 separation of CO2-selective polymer membranes[J]. Applied Surface Science, 2017, 410: 249-258.
|
81 |
Shao P P, Yao R X, Li G, et al. Molecular-sieving membrane by partitioning the channels in ultrafiltration membrane by in situ polymerization[J]. Angewandte Chemie International Edition, 2020, 59(11): 4401-4405.
|
82 |
Fan H W, Mundstock A, Feldhoff A, et al. Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation[J]. Journal of the American Chemical Society, 2018, 140(32): 10094-10098.
|
83 |
Douna I, Farrukh S, Hussain A, et al. Experimental investigation of polysulfone modified cellulose acetate membrane for CO2/H2 gas separation[J]. Korean Journal of Chemical Engineering, 2022, 39(1): 189-197.
|
84 |
Ashtiani S, Sofer Z, Průša F, et al. Molecular-level fabrication of highly selective composite ZIF-8-CNT-PDMS membranes for effective CO2/N2, CO2/H2 and olefin/paraffin separations[J]. Separation and Purification Technology, 2021, 274: 119003.
|
85 |
Wang P Y, Peng Y, Zhu C Y, et al. Single-phase covalent organic framework staggered stacking nanosheet membrane for CO2-selective separation[J]. Angewandte Chemie International Edition, 2021, 60(35): 19047-19052.
|
86 |
Wong K C, Goh P S, Ismail A F. Enhancing hydrogen gas separation performance of thin film composite membrane through facilely blended polyvinyl alcohol and PEBAX[J]. International Journal of Hydrogen Energy, 2021, 46(37): 19737-19748.
|
87 |
Xu X, Wang J, Zhou A, et al. High-efficiency CO2 separation using hybrid LDH-polymer membranes[J]. Nature Communications, 2021, 12: 3069.
|
88 |
Ashtiani S, Khoshnamvand M, Bouša D, et al. Surface and interface engineering in CO2-philic based UiO-66-NH2-PEI mixed matrix membranes via covalently bridging PVP for effective hydrogen purification[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5449-5458.
|
89 |
Yang Y T, Han Y, Pang R Z, et al. Amine-containing membranes with functionalized multi-walled carbon nanotubes for CO2/H2 separation[J]. Membranes, 2020, 10(11): 333.
|
90 |
Gouveia A S L, Malcaitè E, Lozinskaya E I, et al. Poly(ionic liquid)-ionic liquid membranes with fluorosulfonyl-derived anions: characterization and biohydrogen separation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 7087-7096.
|
91 |
Nigiz F U, Hilmioglu N D. Enhanced hydrogen purification by graphene-poly(dimethyl siloxane) membrane[J]. International Journal of Hydrogen Energy, 2020, 45(5): 3549-3557.
|
92 |
Shamsabadi A A, Isfahani A P, Salestan S K, et al. Pushing rubbery polymer membranes to be economic for CO2 separation: embedment with Ti3C2T x MXene nanosheets[J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3984-3992.
|
93 |
Lee J Y, Park C Y, Moon S Y, et al. Surface-attached brush-type CO2-philic poly(PEGMA)/PSf composite membranes by UV/ozone-induced graft polymerization: fabrication, characterization, and gas separation properties[J]. Journal of Membrane Science, 2019, 589: 117214.
|
94 |
Ying W, Zhou K, Hou Q G, et al. Selectively tuning gas transport through ionic liquid filled graphene oxide nanoslits using an electric field[J]. Journal of Materials Chemistry A, 2019, 7(25): 15062-15067.
|
95 |
Ying W, Hou Q G, Chen D K, et al. Electrical field facilitates selective transport of CO2 through a laminated MoS2 supported ionic liquid membrane[J]. Journal of Materials Chemistry A, 2019, 7(16): 10041-10046.
|
96 |
Gouveia A S L, Ventaja L, Tomé L C, et al. Towards biohydrogen separation using poly(ionic liquid)/ionic liquid composite membranes[J]. Membranes, 2018, 8(4): 124.
|
97 |
Hu L Q, Liu J Y, Zhu L X, et al. Highly permeable mixed matrix materials comprising ZIF-8 nanoparticles in rubbery amorphous poly(ethylene oxide) for CO2 capture[J]. Separation and Purification Technology, 2018, 205: 58-65.
|
98 |
Prasad B, Mandal B. Graphene-incorporated biopolymeric mixed-matrix membrane for enhanced CO2 separation by regulating the support pore filling[J]. ACS Applied Materials & Interfaces, 2018, 10(33): 27810-27820.
|
99 |
Hu L Q, Cheng J, Li Y N, et al. Optimization of coating solution viscosity of hollow fiber-supported polydimethylsiloxane membrane for CO2/H2 separation[J]. Journal of Applied Polymer Science, 2018, 135(5): 45765.
|
100 |
Chen D K, Ying W, Guo Y, et al. Enhanced gas separation through nanoconfined ionic liquid in laminated MoS2 membrane[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 44251-44257.
|
101 |
Liu Z, Liu C, Li L F, et al. CO2 separation by supported ionic liquid membranes and prediction of separation performance[J]. International Journal of Greenhouse Gas Control, 2016, 53: 79-84.
|
102 |
Wu R, Yue W Z, Li Y H, et al. Ultra-thin and high hydrogen permeable carbon molecular sieve membrane prepared by using polydopamine as carbon precursor[J]. Materials Letters, 2021, 295: 129863.
|
103 |
Ying Y P, Peh S B, Yang H, et al. Ultrathin covalent organic framework membranes via a multi-interfacial engineering strategy for gas separation[J]. Advanced Materials, 2022, 34(25): 2104946.
|
104 |
Zhao Y J, Liu P, Ying Y P, et al. Heating-driven assembly of covalent organic framework nanosheets for gas separation[J]. Journal of Membrane Science, 2021, 632: 119326.
|
105 |
Kim J P, Choi E, Kang J, et al. Ultrafast H2-selective nanoporous multilayer graphene membrane prepared by confined thermal annealing[J]. Chemical Communications, 2021, 57(70): 8730-8733.
|
106 |
Lei L F, Lindbråthen A, Hillestad M, et al. Carbon molecular sieve membranes for hydrogen purification from a steam methane reforming process[J]. Journal of Membrane Science, 2021, 627: 119241.
|
107 |
Liang J C, Wang Z G, Huang M H, et al. Effects on carbon molecular sieve membrane properties for a precursor polyimide with simultaneous flatness and contortion in the repeat unit[J]. ChemSusChem, 2020, 13(20): 5531-5538.
|
108 |
Villalobos L F, Vahdat M T, Dakhchoune M, et al. Large-scale synthesis of crystalline g-C3N4 nanosheets and high-temperature H2 sieving from assembled films[J]. Science Advances, 2020, 6(4): eaay98514.
|
109 |
Zhang M X, Jing X C, Zhao S, et al. Electropolymerization of molecular-sieving polythiophene membranes for H2 separation[J]. Angewandte Chemie International Edition, 2019, 58(26): 8768-8772.
|
110 |
Pulyalina A, Polotskaya G, Rostovtseva V, et al. Improved hydrogen separation using hybrid membrane composed of nanodiamonds and P84 copolyimide[J]. Polymers, 2018, 10(8): 828.
|
111 |
王志, 原野, 生梦龙, 等. 膜法碳捕集技术: 研究现状及展望[J]. 化工进展, 2022, 41(3): 1097-1101.
|
|
Wang Z, Yuan Y, Sheng M L, et al. Membrane technology for carbon capture—research status and prospects[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1097-1101.
|