CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3406-3416.DOI: 10.11949/0438-1157.20220518
• Reviews and monographs • Previous Articles Next Articles
Dan GUO(), Yujie FANG, Yihan XU, Zhiyuan LI, Shouying HUANG(), Shengping WANG, Xinbin MA
Received:
2022-04-11
Revised:
2022-07-09
Online:
2022-09-06
Published:
2022-08-05
Contact:
Shouying HUANG
郭丹(), 方雨洁, 许一寒, 李致远, 黄守莹(), 王胜平, 马新宾
通讯作者:
黄守莹
作者简介:
郭丹(1993—),女,博士研究生,guodan207@tju.edu.cn
基金资助:
CLC Number:
Dan GUO, Yujie FANG, Yihan XU, Zhiyuan LI, Shouying HUANG, Shengping WANG, Xinbin MA. Research progress of the catalytic conversion of ethane and carbon dioxide[J]. CIESC Journal, 2022, 73(8): 3406-3416.
郭丹, 方雨洁, 许一寒, 李致远, 黄守莹, 王胜平, 马新宾. 乙烷和二氧化碳催化转化的研究进展[J]. 化工学报, 2022, 73(8): 3406-3416.
Add to citation manager EndNote|Ris|BibTeX
Fig.4 The catalytic performance of DRE on supported single-metal catalyst[17,31] and influence of support acidity and alkalinity on performance of Ni-based catalyst[35]
活性 组分 | 载体 | 负载量(质量分数) | 反应 温度/K | 空速/ (ml/(g∙h)) | 转化率/% | CO选择性/% | 反应时间/10-4s | 文献 | |
---|---|---|---|---|---|---|---|---|---|
CO2 | C2H6 | ||||||||
NiPt | CeO2 | 1.51%Ni,1.67%Pt | 873 | 24000 | 53.4 | 22.8 | 92.8 | 3.4~4.2 | [ |
NiPt | TiO2 | 1.51%Ni,1.67%Pt | 873 | 24000 | 27.9 | 11.1 | 85.5 | 3.4~4.2 | [ |
NiPt | γ-Al2O3 | 1.51%Ni,1.67%Pt | 873 | 24000 | 26.5 | 9.2 | 93.0 | 3.4~4.2 | [ |
NiPt | SiO2 | 1.51%Ni,1.67%Pt | 873 | 24000 | 28.2 | 9.2 | 97.0 | 3.4~4.2 | [ |
PdCo | CeO2 | 1%Pd,9%Co | 923 | 18000 | 31.5 | 31.0 | 82.0 | >1.2 | [ |
PdNi | CeO2 | 1%Pd,1%Ni | 923 | 18000 | 53.0 | 39.8 | 86.0 | >1.2 | [ |
PdCu | CeO2 | 1%Pd,1%Cu | 923 | 18000 | 13.0 | 12.5 | 51.0 | >1.2 | [ |
NiFe | CeO2-C2 (25 nm) | 4.0%Ni,1.6%Fe | 873 | 24000 | 8.0 | 3.9 | 53.0 | 4.3 | [ |
NiFe | CeO2 | 0.48%Ni,1.51%Fe | 873 | 150000 | 41.3 | 16.7 | 98.6 | 4.0~4.7 | [ |
NiFe | SiO2 | 0.5%Ni,1.4%Fe | 873 | 24000 | 0.9 | 0.4 | — | 4.0~4.7 | [ |
NiFe | ZrO2 | 0.5%Ni,1.4%Fe | 873 | 24000 | 5.6 | 2.6 | 37.9 | 4.0~4.7 | [ |
NiFe | CeO2 | 2%Ni,5.6%Fe | 873 | 24000 | 13.1 | 3.5 | 67.7 | 4.0~4.7 | [ |
Table 1 Research progress of typical bimetallic catalysts for DRE
活性 组分 | 载体 | 负载量(质量分数) | 反应 温度/K | 空速/ (ml/(g∙h)) | 转化率/% | CO选择性/% | 反应时间/10-4s | 文献 | |
---|---|---|---|---|---|---|---|---|---|
CO2 | C2H6 | ||||||||
NiPt | CeO2 | 1.51%Ni,1.67%Pt | 873 | 24000 | 53.4 | 22.8 | 92.8 | 3.4~4.2 | [ |
NiPt | TiO2 | 1.51%Ni,1.67%Pt | 873 | 24000 | 27.9 | 11.1 | 85.5 | 3.4~4.2 | [ |
NiPt | γ-Al2O3 | 1.51%Ni,1.67%Pt | 873 | 24000 | 26.5 | 9.2 | 93.0 | 3.4~4.2 | [ |
NiPt | SiO2 | 1.51%Ni,1.67%Pt | 873 | 24000 | 28.2 | 9.2 | 97.0 | 3.4~4.2 | [ |
PdCo | CeO2 | 1%Pd,9%Co | 923 | 18000 | 31.5 | 31.0 | 82.0 | >1.2 | [ |
PdNi | CeO2 | 1%Pd,1%Ni | 923 | 18000 | 53.0 | 39.8 | 86.0 | >1.2 | [ |
PdCu | CeO2 | 1%Pd,1%Cu | 923 | 18000 | 13.0 | 12.5 | 51.0 | >1.2 | [ |
NiFe | CeO2-C2 (25 nm) | 4.0%Ni,1.6%Fe | 873 | 24000 | 8.0 | 3.9 | 53.0 | 4.3 | [ |
NiFe | CeO2 | 0.48%Ni,1.51%Fe | 873 | 150000 | 41.3 | 16.7 | 98.6 | 4.0~4.7 | [ |
NiFe | SiO2 | 0.5%Ni,1.4%Fe | 873 | 24000 | 0.9 | 0.4 | — | 4.0~4.7 | [ |
NiFe | ZrO2 | 0.5%Ni,1.4%Fe | 873 | 24000 | 5.6 | 2.6 | 37.9 | 4.0~4.7 | [ |
NiFe | CeO2 | 2%Ni,5.6%Fe | 873 | 24000 | 13.1 | 3.5 | 67.7 | 4.0~4.7 | [ |
催化剂 | 反应温度/K | 空速/(ml/(g·h)) | 反应时间/h | 文献 | |||
---|---|---|---|---|---|---|---|
CrO x /Al2O3 | 873 | 48000 | — | 6.9 | 96 | 2 | [ |
CrO x /ZrO2 | 873 | 48000 | — | 10 | 91 | 2 | [ |
CrO x /Ce x Zr1-x O2 | 873 | 48000 | — | 2.8 | 77 | 2 | [ |
Cr/TiO2-ZrO2 | 973 | 9000 | — | 48.5 | 95 | — | [ |
(K-Ca)50/(Cr10/H-ZSM-5)5 | 973 | — | 18 | 17 | 96 | — | [ |
Mo2C | 873 | 24000 | — | 12 | 20 | 2 | [ |
1%(质量) Fe/Mo2C | 873 | 24000 | — | 8 | 71 | 2 | [ |
Table 2 Performance of CO2-ODH catalysts
催化剂 | 反应温度/K | 空速/(ml/(g·h)) | 反应时间/h | 文献 | |||
---|---|---|---|---|---|---|---|
CrO x /Al2O3 | 873 | 48000 | — | 6.9 | 96 | 2 | [ |
CrO x /ZrO2 | 873 | 48000 | — | 10 | 91 | 2 | [ |
CrO x /Ce x Zr1-x O2 | 873 | 48000 | — | 2.8 | 77 | 2 | [ |
Cr/TiO2-ZrO2 | 973 | 9000 | — | 48.5 | 95 | — | [ |
(K-Ca)50/(Cr10/H-ZSM-5)5 | 973 | — | 18 | 17 | 96 | — | [ |
Mo2C | 873 | 24000 | — | 12 | 20 | 2 | [ |
1%(质量) Fe/Mo2C | 873 | 24000 | — | 8 | 71 | 2 | [ |
47 | Das S, Sengupta M, Patel J, et al. A study of the synergy between support surface properties and catalyst deactivation for CO2 reforming over supported Ni nanoparticles[J]. Applied Catalysis A: General, 2017, 545: 113-126. |
48 | Porosoff M D, Chen J G. Trends in the catalytic reduction of CO2 by hydrogen over supported monometallic and bimetallic catalysts[J]. Journal of Catalysis, 2013, 301: 30-37. |
49 | Iwasaki N O, Miyake T, Yagasaki E, et al. Partial oxidation of ethane to synthesis gas over Co-loaded catalysts[J]. Catalysis Today, 2006, 111(3/4): 391-397. |
50 | Liu Y, Wu Y, Akhtamberdinova Z, et al. Dry reforming of shale gas and carbon dioxide with Ni-Ce-Al2O3 catalyst: syngas production enhanced over Ni-CeO x formation[J]. ChemCatChem, 2018, 10(20): 4689-4698. |
51 | Yoon S, Kang I, Bae J. Effects of ethylene on carbon formation in diesel autothermal reforming[J]. International Journal of Hydrogen Energy, 2008, 33(18): 4780-4788. |
52 | Joensen F, Rostrup-Nielsen J R. Conversion of hydrocarbons and alcohols for fuel cells[J]. Journal of Power Sources, 2002, 105(2): 195-201. |
53 | Choudhary V R, Mondal K C, Mulla S A R. Non-catalytic pyrolysis of ethane to ethylene in the presence of CO2 with or without limited O2 [J]. Journal of Chemical Sciences, 2006, 118(3): 261-267. |
54 | Bugrova T A, Dutov V V, Svetlichnyi V A, et al. Oxidative dehydrogenation of ethane with CO2 over CrO x catalysts supported on Al2O3, ZrO2, CeO2 and Ce x Zr1- x O2 [J]. Catalysis Today, 2019, 333: 71-80. |
55 | Talati A, Haghighi M, Rahmani F. Oxidative dehydrogenation of ethane to ethylene by carbon dioxide over Cr/TiO2-ZrO2 nanocatalyst: effect of active phase and support composition on catalytic properties and performance[J]. Advanced Powder Technology, 2016, 27(4): 1195-1206. |
56 | Al-Mamoori A, Lawson S, Rownaghi A A, et al. Oxidative dehydrogenation of ethane to ethylene in an integrated CO2 capture-utilization process[J]. Applied Catalysis B: Environmental, 2020, 278: 119329. |
57 | Yao S Y, Yan B H, Jiang Z, et al. Combining CO2 reduction with ethane oxidative dehydrogenation by oxygen-modification of molybdenum carbide[J]. ACS Catalysis, 2018, 8(6): 5374-5381. |
58 | Jeong M H, Sun J, Young H G, et al. Successive reduction-oxidation activity of FeO x /TiO2 for dehydrogenation of ethane and subsequent CO2 activation[J]. Applied Catalysis B: Environmental, 2020, 270: 118887. |
59 | Koirala R, Safonova O V, Pratsinis S E, et al. Effect of cobalt loading on structure and catalytic behavior of CoO x /SiO2 in CO2-assisted dehydrogenation of ethane[J]. Applied Catalysis A: General, 2018, 552: 77-85. |
60 | Nowicka E, Reece C, Althahban S M, et al. Elucidating the role of CO2 in the soft oxidative dehydrogenation of propane over ceria-based catalysts[J]. ACS Catalysis, 2018, 8(4): 3454-3468. |
61 | Koirala R, Buechel R, Pratsinis S E, et al. Silica is preferred over various single and mixed oxides as support for CO2-assisted cobalt-catalyzed oxidative dehydrogenation of ethane[J]. Applied Catalysis A: General, 2016, 527: 96-108. |
62 | Zhou Y L, Wei F F, Lin J, et al. Sulfate-modified NiAl mixed oxides as effective C—H bond-breaking agents for the sole production of ethylene from ethane[J]. ACS Catalysis, 2020, 10(14): 7619-7629. |
63 | Zhu H B, Rosenfeld D C, Harb M, et al. Ni–M–O (M = Sn, Ti, W) catalysts prepared by a dry mixing method for oxidative dehydrogenation of ethane[J]. ACS Catalysis, 2016, 6(5): 2852-2866. |
64 | Lei T Q, Miao C X, Hua W M, et al. Oxidative dehydrogenation of ethane with CO2 over Au/CeO2 nanorod catalysts[J]. Catalysis Letters, 2018, 148(6): 1634-1642. |
65 | Ruiz Puigdollers A, Schlexer P, Tosoni S, et al. Increasing oxide reducibility: the role of metal/oxide interfaces in the formation of oxygen vacancies[J]. ACS Catalysis, 2017, 7(10): 6493-6513. |
66 | Li X Y, Liu S F, Chen H R, et al. Improved catalytic performance of ethane dehydrogenation in the presence of CO2 over Zr-promoted Cr/SiO2 [J]. ACS Omega, 2019, 4(27): 22562-22573. |
67 | Sagar T V, Surendar M, Padmakar D, et al. Selectivity reversal in oxidative dehydrogenation of ethane with CO2 on CaO–NiO/Al2O3 catalysts[J]. Catalysis Letters, 2017, 147(1): 82-89. |
68 | Liu G, Zeng L, Zhao Z J, et al. Platinum-modified ZnO/Al2O3 for propane dehydrogenation: minimized platinum usage and improved catalytic stability[J]. ACS Catalysis, 2016, 6(4): 2158-2162. |
69 | Wang S B, Zhu Z H. Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation: a review[J]. Energy & Fuels, 2004, 18(4): 1126-1139. |
70 | Porosoff M D, Yang X F, Boscoboinik J A, et al. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO[J]. Angewandte Chemie, 2014, 126(26): 6823-6827. |
1 | 刘磊, 金晶, 赵庆庆, 等. 中国及世界一次能源消费结构现状分析[J]. 能源研究与信息, 2014, 30(1): 7-11. |
Liu L, Jin J, Zhao Q Q, et al. Study on the structure of China and world primary energy consumption[J]. Energy Research and Information, 2014, 30(1): 7-11. | |
2 | Jales M. Commodities at a Glance: Special Issue on Gum Arabic[M]. Geneva: UNCTAD, 2018. |
3 | Melzer D, Xu P H, Hartmann D, et al. Atomic-scale determination of active facets on the MoVTeNb oxide M1 phase and their intrinsic catalytic activity for ethane oxidative dehydrogenation[J]. Angewandte Chemie International Edition, 2016, 55(31): 8873-8877. |
4 | Dang D, Chen X, Yan B H, et al. Catalytic performance of phase-pure M1 MoVNbTeO x /CeO2 composite for oxidative dehydrogenation of ethane[J]. Journal of Catalysis, 2018, 365: 238-248. |
5 | Yan B H, Yang X F, Yao S Y, et al. Dry reforming of ethane and butane with CO2 over PtNi/CeO2 bimetallic catalysts[J]. ACS Catalysis, 2016, 6(11): 7283-7292. |
6 | Xie Z H, Yan B H, Lee J H, et al. Effects of oxide supports on the CO2 reforming of ethane over Pt-Ni bimetallic catalysts[J]. Applied Catalysis B: Environmental, 2019, 245: 376-388. |
7 | Myint M, Yan B H, Wan J, et al. Reforming and oxidative dehydrogenation of ethane with CO2 as a soft oxidant over bimetallic catalysts[J]. Journal of Catalysis, 2016, 343: 168-177. |
8 | Wang Y L, Hu P, Yang J, et al. C—H bond activation in light alkanes: a theoretical perspective[J]. Chemical Society Reviews, 2021, 50(7): 4299-4358. |
9 | Mateos Pedrero C, González Carrazán S, Ruiz P. Preliminary results on the role of the deposition of small amounts of ZrO2 on Al2O3 support on the partial oxidation of methane and ethane over Rh and Ni supported catalysts[J]. Catalysis Today, 2021, 363: 111-121. |
10 | Savchenko V I, Zimin Y S, Nikitin A V, et al. Utilization of CO2 in non-catalytic dry reforming of C1—C4 hydrocarbons[J]. Journal of CO2 Utilization, 2021, 47: 101490. |
11 | Porosoff M D, Myint M N Z, Kattel S, et al. Identifying different types of catalysts for CO2 reduction by ethane through dry reforming and oxidative dehydrogenation[J]. Angewandte Chemie, 2015, 127(51): 15721-15725. |
12 | Zhao B H, Yan B H, Yao S Y, et al. LaFe0.9Ni0.1O3 perovskite catalyst with enhanced activity and coke-resistance for dry reforming of ethane[J]. Journal of Catalysis, 2018, 358: 168-178. |
71 | Posada-Pérez S, Viñes F, Ramirez P J, et al. The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C(001) surfaces[J]. Physical Chemistry Chemical Physics, 2014, 16(28): 14912-14921. |
13 | Tsiotsias A I, Charisiou N D, Sebastian V, et al. A comparative study of Ni catalysts supported on Al2O3, MgO-CaO-Al2O3 and La2O3-Al2O3 for the dry reforming of ethane[J]. International Journal of Hydrogen Energy, 2022, 47(8): 5337-5353. |
14 | Li Y C, Li L Y, Sun W J, et al. Porous silica coated ceria as a switch in tandem oxidative dehydrogenation and dry reforming of ethane with CO2 [J]. ChemCatChem, 2021, 13(15): 3501-3509. |
15 | Kattel S, Chen J G, Liu P. Mechanistic study of dry reforming of ethane by CO2 on a bimetallic PtNi(111) model surface[J]. Catalysis Science & Technology, 2018, 8(15): 3748-3758. |
16 | Lv J N, Wang D C, Wang M Y, et al. Integrated coal pyrolysis with dry reforming of low carbon alkane over Ni/La2O3 to improve tar yield[J]. Fuel, 2020, 266: 117092. |
17 | Li X Q, Yang Z Q, Zhang L, et al. Effect of Pd doping in (Fe/Ni)/CeO2 catalyst for the reaction path in CO2 oxidative ethane dehydrogenation/reforming[J]. Energy, 2021, 234: 121261. |
18 | Xu X D, Moulijn J A. Mitigation of CO2 by chemical conversion: plausible chemical reactions and promising products[J]. Energy & Fuels, 1996, 10(2): 305-325. |
19 | Ayari F, Charrad R, Asedegbega-Nieto E, et al. Ethane oxidative dehydrogenation over ternary and binary mixtures of alkaline and alkaline earth chlorides supported on zeolites[J]. Microporous and Mesoporous Materials, 2017, 250: 65-71. |
20 | Song Y F, Lin L, Feng W C, et al. Interfacial enhancement by γ-Al2O3 of electrochemical oxidative dehydrogenation of ethane to ethylene in solid oxide electrolysis cells[J]. Angewandte Chemie, 2019, 131(45): 16189-16192. |
21 | Yao R, Herrera J E, Chen L H, et al. Generalized mechanistic framework for ethane dehydrogenation and oxidative dehydrogenation on molybdenum oxide catalysts[J]. ACS Catalysis, 2020, 10(12): 6952-6968. |
22 | Bian Y X, Kim M, Li T, et al. Facile dehydrogenation of ethane on the IrO2(110) surface[J]. Journal of the American Chemical Society, 2018, 140(7): 2665-2672. |
23 | Xu X, Kumar Megarajan S, Xia X F, et al. Effect of reduction temperature on the structure and catalytic performance of mesoporous Ni-Fe-Al2O3 in oxidative dehydrogenation of ethane[J]. New Journal of Chemistry, 2020, 44(44): 18994-19001. |
24 | Park J L, Canizales K A, Argyle M D, et al. The effects of doping alumina with silica in alumina-supported NiO catalysts for oxidative dehydrogenation of ethane[J]. Microporous and Mesoporous Materials, 2020, 293: 109799. |
25 | 吴小平, 王晨光, 张琦, 等. PtSn-Mg(Zn)AlO催化剂应用于乙烷脱氢反应研究[J]. 化工学报, 2019, 70(11): 4268-4277. |
Wu X P, Wang C G, Zhang Q, et al. Study on ethane dehydrogenation over PtSn-Mg(Zn)AlO catalyst[J]. CIESC Journal, 2019, 70(11): 4268-4277. | |
26 | 李倩倩, 唐思扬, 岳海荣, 等. Pd-Rh/TiO2光催化CO2氧化乙烷脱氢研究[J]. 化工学报, 2020, 71(8): 3556-3564. |
Li Q Q, Tang S Y, Yue H R, et al. Study on the photocatalytic oxidative dehydrogenation of ethane with CO2 over Pd-Ph/TiO2 catalyst[J]. CIESC Journal, 2020, 71(8): 3556-3564. | |
27 | Yan B H, Yao S Y, Chen J G. Effect of oxide support on catalytic performance of FeNi-based catalysts for CO2-assisted oxidative dehydrogenation of ethane[J]. ChemCatChem, 2020, 12(2): 494-503. |
28 | Guo M, Feng K, Wang Y N, et al. Unveiling the role of active oxygen species in oxidative dehydrogenation of ethane with CO2 over NiFe/CeO2 [J]. ChemCatChem, 2021, 13(13): 3119-3131. |
29 | Ye L T, Duan X Y, Xie K. Electrochemical oxidative dehydrogenation of ethane to ethylene in a solid oxide electrolyzer[J]. Angewandte Chemie International Edition, 2021, 60(40): 21746-21750. |
30 | Gambo Y, Adamu S, Tanimu G, et al. CO2-mediated oxidative dehydrogenation of light alkanes to olefins: advances and perspectives in catalyst design and process improvement[J]. Applied Catalysis A: General, 2021, 623: 118273. |
31 | Xie Z H, Tian D, Xie M, et al. Interfacial active sites for CO2 assisted selective cleavage of C—C/C—H bonds in ethane[J]. Chem, 2020, 6(10): 2703-2716. |
32 | 李桂英, 鲁大学, 董淑娟, 等. CO2催化氧化乙烷的研究进展[J]. 天然气化工(C1化学与化工), 2011, 36(2): 50-54. |
Li G Y, Lu D X, Dong S J, et al. Advances in oxidation of ethane using CO2 as oxidant[J]. Natural Gas Chemical Industry, 2011, 36(2): 50-54. | |
33 | Varghese J J, Mushrif S H. Insights into the C—H bond activation on NiO surfaces: the role of nickel and oxygen vacancies and of low valent dopants on the reactivity and energetics[J]. The Journal of Physical Chemistry C, 2017, 121(33): 17969-17981. |
34 | Zhao Z J, Liu S H, Zha S J, et al. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors[J]. Nature Reviews Materials, 2019, 4(12): 792-804. |
35 | Kim K H, You Y W, Jeong M H, et al. Influence of support acidity on CO2 reforming of ethane at high temperature[J]. Journal of CO2 Utilization, 2021, 53: 101713. |
36 | Saadi S, Abild-Pedersen F, Helveg S, et al. On the role of metal step-edges in graphene growth[J]. The Journal of Physical Chemistry C, 2010, 114(25): 11221-11227. |
37 | Pakhare D, Spivey J. A review of dry (CO2) reforming of methane over noble metal catalysts[J]. Chemical Society Reviews, 2014, 43(22): 7813-7837. |
38 | Jang W J, Shim J O, Kim H M, et al. A review on dry reforming of methane in aspect of catalytic properties[J]. Catalysis Today, 2019, 324: 15-26. |
39 | Abdulrasheed A, Jalil A A, Gambo Y, et al. A review on catalyst development for dry reforming of methane to syngas: recent advances[J]. Renewable and Sustainable Energy Reviews, 2019, 108: 175-193. |
40 | Yan B H, Yao S Y, Kattel S, et al. Active sites for tandem reactions of CO2 reduction and ethane dehydrogenation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(33): 8278-8283. |
41 | de Miguel S R, Vilella I M J, Maina S P, et al. Influence of Pt addition to Ni catalysts on the catalytic performance for long term dry reforming of methane[J]. Applied Catalysis A: General, 2012, 435/436: 10-18. |
42 | García-Diéguez M, Pieta I S, Herrera M C, et al. Improved Pt-Ni nanocatalysts for dry reforming of methane[J]. Applied Catalysis A: General, 2010, 377(1/2): 191-199. |
43 | Lonergan W W, Vlachos D G, Chen J G. Correlating extent of Pt-Ni bond formation with low-temperature hydrogenation of benzene and 1, 3-butadiene over supported Pt/Ni bimetallic catalysts[J]. Journal of Catalysis, 2010, 271(2): 239-250. |
44 | Lu S L, Lonergan W W, Zhu Y X, et al. Support effect on the low-temperature hydrogenation of benzene over PtCo bimetallic and the corresponding monometallic catalysts[J]. Applied Catalysis B: Environmental, 2009, 91(3/4): 610-618. |
45 | Appel L G, Eon J, Schmal M. The CO2–CeO2 interaction and its role in the CeO2 reactivity[J]. Catalysis Letters, 1998, 56: 199-202. |
46 | Raseale S, Marquart W, Jeske K, et al. Supported Fe x Ni y catalysts for the co-activation of CO2 and small alkanes[J]. Faraday Discussions, 2021, 229: 208-231. |
[1] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[6] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[7] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[8] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[9] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[10] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[11] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[12] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[13] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[14] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[15] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||