CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3625-3635.DOI: 10.11949/0438-1157.20220238
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Zhenhe XU1(), Hongjiang LI1, Yu GAO1, Zheng LI2, Hanyan ZHANG2, Baotong XU2, Fu DING2, Yaguang SUN2()
Received:
2022-02-24
Revised:
2022-05-07
Online:
2022-09-06
Published:
2022-08-05
Contact:
Yaguang SUN
徐振和1(), 李泓江1, 高雨1, 礼峥2, 张含烟2, 徐宝彤2, 丁茯2, 孙亚光2()
通讯作者:
孙亚光
作者简介:
徐振和(1981—),男,博士,副教授,xuzh056@163.com
基金资助:
CLC Number:
Zhenhe XU, Hongjiang LI, Yu GAO, Zheng LI, Hanyan ZHANG, Baotong XU, Fu DING, Yaguang SUN. Preparation of In2O3/Ag:ZnIn2S4 “Type Ⅱ” heterogeneous structure materials for visible light catalysis[J]. CIESC Journal, 2022, 73(8): 3625-3635.
徐振和, 李泓江, 高雨, 礼峥, 张含烟, 徐宝彤, 丁茯, 孙亚光. In2O3/Ag:ZnIn2S4“Type Ⅱ”型异质结构材料的制备及可见光催化性能[J]. 化工学报, 2022, 73(8): 3625-3635.
1 | Su T M, Shao Q, Qin Z Z, et al. Role of interfaces in two-dimensional photocatalyst for water splitting[J]. ACS Catalysis, 2018, 8(3): 2253-2276. |
2 | Zhang R L, Xie J W, Wang C, et al. Macroporous ZnO/ZnS/CdS composite spheres as efficient and stable photocatalysts for solar-driven hydrogen generation[J]. Journal of Materials Science, 2017, 52(19): 11124-11134. |
3 | Gao Y, Shi C, Feng J Z, et al. Synergistic effect of upconversion and plasmons in NaYF4: Yb3+, Er3+, Tm3+@TiO2–Ag composites for MO photodegradation[J]. RSC Advances, 2017, 7(86): 54555-54561. |
4 | 王昱涵, 白思雨, 崔丽杰, 等. Ni-Mo双金属催化剂的甲烷化性能与耐硫稳定性[J]. 化工学报, 2018, 69(5): 2063-2072. |
Wang Y H, Bai S Y, Cui L J, et al. Catalytic activity and sulfur-resistance stability of Ni-Mo-based catalysts for syngas methanation[J]. CIESC Journal, 2018, 69(5): 2063-2072. | |
5 | Mao Z Y, Chen J J, Yang Y F, et al. Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution[J]. ACS Applied Materials & Interfaces, 2017, 9(14): 12427-12435. |
6 | Yuan Y J, Li Z J, Wu S T, et al. Role of two-dimensional nanointerfaces in enhancing the photocatalytic performance of 2D-2D MoS2/CdS photocatalysts for H2 production[J]. Chemical Engineering Journal, 2018, 350: 335-343. |
7 | 张霄玲, 鲍佳宁, 李运甲, 等. 工业MnO x 颗粒催化剂的制备及其低温脱硝应用研究[J]. 化工学报, 2020, 71(11): 5169-5177. |
Zhang X L, Bao J N, Li Y J, et al. Preparation and industrial application of MnO x particle catalyst for low temperature denitration[J]. CIESC Journal, 2020, 71(11): 5169-5177. | |
8 | Xu Z H, Xu B T, Qian K, et al. In situ growth of CuS nanoparticles on g-C3N4 nanosheets for H2 production and the degradation of organic pollutant under visible-light irradiation[J]. RSC Advances, 2019, 9(44): 25638-25646. |
9 | Jiang L B, Yuan X Z, Pan Y, et al. Doping of graphitic carbon nitride for photocatalysis: a reveiw[J]. Applied Catalysis B: Environmental, 2017, 217: 388-406. |
10 | Cao M J, Wang F, Zhu J F, et al. Shape-controlled synthesis of flower-like ZnO microstructures and their enhanced photocatalytic properties[J]. Materials Letters, 2017, 192: 1-4. |
11 | Gao Y, Lin J Y, Zhang Q Z, et al. Facile synthesis of heterostructured YVO4/g-C3N4/Ag photocatalysts with enhanced visible-light photocatalytic performance[J]. Applied Catalysis B: Environmental, 2018, 224: 586-593. |
12 | Priya B S, Shanthi M, Manoharan C, et al. Hydrothermal synthesis of Ga-doped In2O3 nanostructure and its structural, optical and photocatalytic properties[J]. Materials Science in Semiconductor Processing, 2017, 71: 357-365. |
13 | Wang Y Y, Xue S L, Xie P, et al. Preparation, characterization and photocatalytic activity of juglans-like indium oxide (In2O3) nanospheres[J]. Materials Letters, 2017, 192: 76-79. |
14 | Lin L H, Ou H H, Zhang Y F, et al. Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis[J]. ACS Catalysis, 2016, 6(6): 3921-3931. |
15 | Ma Y, Wang X L, Jia Y S, et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations[J]. Chemical Reviews, 2014, 114(19): 9987-10043. |
16 | Wang M Y, Huang S S, Pang X, et al. Switching charge kinetics from type-I to Z-scheme for g-C3N4 and ZnIn2S4 by defective engineering for efficient and durable hydrogen evolution[J]. Sustainable Energy & Fuels, 2019, 3(12): 3422-3429. |
17 | Zeng D Q, Xiao L, Ong W J, et al. Hierarchical ZnIn2S4/MoSe2 nanoarchitectures for efficient noble-metal-free photocatalytic hydrogen evolution under visible light[J]. ChemSusChem, 2017, 10(22): 4624-4631. |
18 | Chai B, Liu C, Wang C L, et al. Photocatalytic hydrogen evolution activity over MoS2/ZnIn2S4 microspheres[J]. Chinese Journal of Catalysis, 2017, 38(12): 2067-2075. |
19 | Li Z J, Wang X H, Tian W L, et al. CoNi bimetal cocatalyst modifying a hierarchical ZnIn2S4 nanosheet-based microsphere noble-metal-free photocatalyst for efficient visible-light-driven photocatalytic hydrogen production[J]. ACS Sustainable Chemistry & Engineering, 2019(16): 20190-20201. |
20 | Shen S H, Zhao L, Zhou Z H, et al. Enhanced photocatalytic hydrogen evolution over Cu-doped ZnIn2S4 under visible light irradiation[J]. The Journal of Physical Chemistry C, 2008, 112(41): 16148-16155. |
21 | Qiu P X, Yao J H, Chen H, et al. Enhanced visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over ZnIn2S4/g-C3N4 photocatalyst[J]. Journal of Hazardous Materials, 2016, 317: 158-168. |
22 | 孙亚光, 张含烟, 明涛, 等. ZnIn2S4/g-C3N4复合材料的制备及可见光催化制氢性能[J]. 高等学校化学学报, 2021, 42(10): 3160-3166. |
Sun Y G, Zhang H Y, Ming T, et al. Synthesis of ZnIn2S4/g-C3N4 nanocomposites with efficient photocatalytic H2 generation activity by a simple hydrothermal method[J]. Chemical Journal of Chinese Universities, 2021, 42(10): 3160-3166. | |
23 | Ding F, Ming T, Zhang H Y, et al. Plasmonic Ag nanoparticles decorated g-C3N4 for enhanced visible-light driven photocatalytic degradation and H2 production[J]. Resources Chemicals and Materials, 2022, 1(1): 1-7. |
24 | Gao Y, Xu B T, Cherif M, et al. Atomic insights for Ag interstitial/substitutional doping into ZnIn2S4 nanoplates and intimate coupling with reduced graphene oxide for enhanced photocatalytic hydrogen production by water splitting[J]. Applied Catalysis B: Environmental, 2020, 279: 119403. |
25 | 高雨, 张含烟, 林俊英, 等. CdS/RGO/MoS2复合材料的制备及光催化性能[J]. 精细化工, 2022, 39(4): 734-740. |
Gao Y, Zhang H Y, Lin J Y, et al. Preparation of CdS/RGO/MoS2 composite and its photocatalytic performance[J]. Fine Chemicals, 2022, 39(4): 734-740. | |
26 | Wang S B, Guan B Y, Lou X W. Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction[J]. Journal of the American Chemical Society, 2018, 140(15): 5037-5040. |
27 | Gao Y, Qian K, Xu B T, et al. Designing 2D-2D g-C3N4/Ag:ZnIn2S4 nanocomposites for the high-performance conversion of sunlight energy into hydrogen fuel and the meaningful reduction of pollution[J]. RSC Advances, 2020, 10(54): 32652-32661. |
28 | Ren J T, Yuan K, Wu K, et al. A robust CdS/In2O3 hierarchical heterostructure derived from a metal-organic framework for efficient visible-light photocatalytic hydrogen production[J]. Inorganic Chemistry Frontiers, 2019, 6(2): 366-375. |
29 | 姬磊, 于瑞敏, 王浩人, 等. BiOCl/NaBiO3复合材料的原位合成及光催化性能[J]. 高等学校化学学报, 2015, 36(3): 551-558. |
Ji L, Yu R M, Wang H R, et al. In-situ synthesis of BiOCl/NaBiO3 composites and their photocatalytic activities[J]. Chemical Journal of Chinese Universities, 2015, 36(3): 551-558. | |
30 | Xu Z H, Kibria M G, Al Otaibi B, et al. Towards enhancing photocatalytic hydrogen generation: which is more important, alloy synergistic effect or plasmonic effect?[J]. Applied Catalysis B: Environmental, 2018, 221: 77-85. |
31 | Xu Z H, Quintanilla M, Vetrone F, et al. Harvesting lost photons: plasmon and upconversion enhanced broadband photocatalytic activity in core@shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au[J]. Advanced Functional Materials, 2015, 25(20): 2950-2960. |
32 | Sharma M D, Mahala C, Basu M. Photoelectrochemical water splitting by In2S3/In2O3 composite nanopyramids[J]. ACS Applied Nano Materials, 2020, 3(11): 11638-11649. |
33 | Ye L Q, Liu J Y, Jiang Z, et al. Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity[J]. Applied Catalysis B: Environmental, 2013, 142/143: 1-7. |
34 | Li T T, Zhao L H, He Y M, et al. Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation[J]. Applied Catalysis B: Environmental, 2013, 129: 255-263. |
35 | 雷珊, 杨娟, 余剑, 等. 含钛高炉渣制备SCR烟气脱硝催化剂[J]. 化工学报, 2014, 65(4): 1251-1259. |
Lei S, Yang J, Yu J, et al. SCR denitration catalyst prepared from titanium-bearing blast furnace slag[J]. CIESC Journal, 2014, 65(4): 1251-1259. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[4] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[5] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[6] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[7] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[8] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[9] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[10] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[11] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[12] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[13] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[14] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[15] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 278
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 930
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||