CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3720-3730.DOI: 10.11949/0438-1157.20220478
• Energy and environmental engineering • Previous Articles Next Articles
Lianfeng ZHU1,2,3(), Chao WANG1,2(), Mengjuan ZHANG1,2, Fangzheng LIU1,2, Xin JIA1,2, Ping AN1,2, Guangwen XU1,2, Zhennan HAN1,2()
Received:
2022-04-06
Revised:
2022-05-10
Online:
2022-09-06
Published:
2022-08-05
Contact:
Chao WANG, Zhennan HAN
朱莲峰1,2,3(), 王超1,2(), 张梦娟1,2, 刘方正1,2, 贾鑫1,2, 安萍1,2, 许光文1,2, 韩振南1,2()
通讯作者:
王超,韩振南
作者简介:
朱莲峰(1997—),男,硕士研究生,zhulianfeng0724@163.com
基金资助:
CLC Number:
Lianfeng ZHU, Chao WANG, Mengjuan ZHANG, Fangzheng LIU, Xin JIA, Ping AN, Guangwen XU, Zhennan HAN. Fluidized bed two-stage gasification of coal with steam/O2 for production of low-tar syngas[J]. CIESC Journal, 2022, 73(8): 3720-3730.
朱莲峰, 王超, 张梦娟, 刘方正, 贾鑫, 安萍, 许光文, 韩振南. 水蒸气/氧流化床两段煤气化制备低焦油合成气工艺实验[J]. 化工学报, 2022, 73(8): 3720-3730.
Add to citation manager EndNote|Ris|BibTeX
Industrial analysis/ %(mass,ad) | Elemental analysis/%(mass,ad) | |||||||
---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | O① | N | S |
4.80 | 9.23 | 30.20 | 55.77 | 70.85 | 3.96 | 23.74 | 1.01 | 0.44 |
Table 1 Industrial and elemental analyses of tested bituminous coal
Industrial analysis/ %(mass,ad) | Elemental analysis/%(mass,ad) | |||||||
---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | O① | N | S |
4.80 | 9.23 | 30.20 | 55.77 | 70.85 | 3.96 | 23.74 | 1.01 | 0.44 |
Fig.4 Thermogravimetric analysis of tested coal and produced char in air atmosphere (char samples generated from coal gasification under ER=0.36 and S/C=0.15)
Fig.9 Gas yield, tar content and simulated distillation results of tar (a), the temperature variation with S/C ratio increasing (b), and the variations of cold gas efficiency and carbon conversion efficiency (c) at realized steady gasification test
Typical applied gasifier name | Feedstock | Institute | Caloric value/ (MJ/m3) | Tar content/ (g/m3) | Ref. |
---|---|---|---|---|---|
downdraft gasifier | high ash biomass and high ash coal | Institute of Technology, Nirma University, Ahmedabad, India | 4.98—5.62 | 0.11—0.52 | [ |
top-lit updraft gasifier (TLUD) | palm kernel shell, high-volatile bituminous coal | Department of Mechanical Engineering, Universidad del Norte, Colombia | 3.7—5.1 | 8.55—132.4 | [ |
staged fixed-bed gasifier | wood, bark, and sunflower husk pellets | VTT Technical Research Centre of Finland Ltd., Finland | 2.4—12.1 | 0.01—0.254 | [ |
bubbling fluidized bed | pinewood, maple-oak wood, seed corn | Department of Mechanical Engineering, Iowa State University, USA | 4.28—8.26 | 6.62—19.55 | [ |
circulating fluidized bed | cypress, hemlock, cedar, spruce, pine, and mixed sawdust | The University of British Columbia, Canada | 2.43—6.13 | 0.4—15.2 | [ |
dual fluidized bed | wood chips, coal, sewage sludge, and plastics | Vienna University of Technology, Austria | 12—14 | 0.5—20 | [ |
two-stage fluidized bed | low-rank coal | IPE, China | 4.6 | 0.365—1.13 | [ |
this work | bituminous coal | Shenyang University of Chemical Technology, China | 8.99 | 0.437 | — |
Table 2 Comparison of different gasification technologies in references
Typical applied gasifier name | Feedstock | Institute | Caloric value/ (MJ/m3) | Tar content/ (g/m3) | Ref. |
---|---|---|---|---|---|
downdraft gasifier | high ash biomass and high ash coal | Institute of Technology, Nirma University, Ahmedabad, India | 4.98—5.62 | 0.11—0.52 | [ |
top-lit updraft gasifier (TLUD) | palm kernel shell, high-volatile bituminous coal | Department of Mechanical Engineering, Universidad del Norte, Colombia | 3.7—5.1 | 8.55—132.4 | [ |
staged fixed-bed gasifier | wood, bark, and sunflower husk pellets | VTT Technical Research Centre of Finland Ltd., Finland | 2.4—12.1 | 0.01—0.254 | [ |
bubbling fluidized bed | pinewood, maple-oak wood, seed corn | Department of Mechanical Engineering, Iowa State University, USA | 4.28—8.26 | 6.62—19.55 | [ |
circulating fluidized bed | cypress, hemlock, cedar, spruce, pine, and mixed sawdust | The University of British Columbia, Canada | 2.43—6.13 | 0.4—15.2 | [ |
dual fluidized bed | wood chips, coal, sewage sludge, and plastics | Vienna University of Technology, Austria | 12—14 | 0.5—20 | [ |
two-stage fluidized bed | low-rank coal | IPE, China | 4.6 | 0.365—1.13 | [ |
this work | bituminous coal | Shenyang University of Chemical Technology, China | 8.99 | 0.437 | — |
1 | Xie K C, Li W Y, Zhao W. Coal chemical industry and its sustainable development in China[J]. Energy, 2010, 35(11): 4349-4355. |
2 | Guan G Q. Clean coal technologies in Japan: a review[J]. Chinese Journal of Chemical Engineering, 2017, 25(6): 689-697. |
3 | Wang Y, Dong W, Dong L, et al. Production of middle caloric fuel gas from coal by dual-bed gasification technology[J]. Energy & Fuels, 2010, 24(5): 2985-2990. |
4 | Zeng X, Ueki Y, Yoshiie R, et al. Recent progress in tar removal by char and the applications: a comprehensive analysis[J]. Carbon Resources Conversion, 2020, 3: 1-18. |
5 | Zhang J W, Wang Y, Dong L, et al. Decoupling gasification: approach principle and technology justification[J]. Energy & Fuels, 2010, 24(12): 6223-6232. |
6 | Chen Z H, Li Y J, Lai D G, et al. Coupling coal pyrolysis with char gasification in a multi-stage fluidized bed to co-produce high-quality tar and syngas[J]. Applied Energy, 2018, 215: 348-355. |
7 | Han Z N, Geng S L, Zeng X, et al. Reaction decoupling in thermochemical fuel conversion and technical progress based on decoupling using fluidized bed[J]. Carbon Resources Conversion, 2018, 1(2): 109-125. |
8 | Fan S M, Yuan X Z, Zhao L, et al. Experimental and kinetic study of catalytic steam gasification of low rank coal with an environmentally friendly, inexpensive composite K2CO3-eggshell derived CaO catalyst[J]. Fuel, 2016, 165: 397-404. |
9 | Hanchate N, Ramani S, Mathpati C S, et al. Biomass gasification using dual fluidized bed gasification systems: a review[J]. Journal of Cleaner Production, 2021, 280: 123148. |
10 | Berdugo Vilches T, Maric J, Knutsson P, et al. Bed material as a catalyst for char gasification: the case of ash-coated olivine activated by K and S addition[J]. Fuel, 2018, 224: 85-93. |
11 | Zhang Y M, Wang Y, Cai L G, et al. Dual bed pyrolysis gasification of coal: process analysis and pilot test[J]. Fuel, 2013, 112: 624-634. |
12 | Kern S, Pfeifer C, Hofbauer H. Gasification of lignite in a dual fluidized bed gasifier—influence of bed material particle size and the amount of steam [J]. Fuel Processing Technology, 2013, 111: 1-13. |
13 | Al-Rahbi A S, Williams P T. Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char[J]. Applied Energy, 2017, 190: 501-509. |
14 | Zeng X, Wang F, Han Z N, et al. Characterization and pilot scale test of a fluidized bed two-stage gasification process for the production of clean industrial fuel gas from low-rank coal[J]. Carbon Resources Conversion, 2018, 1(1): 73-80. |
15 | Li G Y, Wang L P, Wang C W, et al. Experimental study on coal gasification in a full-scale two-stage entrained-flow gasifier[J]. Energies, 2020, 13(18): 4937. |
16 | Wang Y, Yoshikawa K, Namioka T, et al. Performance optimization of two-staged gasification system for woody biomass[J]. Fuel Processing Technology, 2007, 88(3): 243-250. |
17 | Wang C, Zhang M J, Han Z N, et al. Pilot verification of a two-stage fluidized bed gasifier with a downer pyrolyzer using oxygen-rich air[J]. Fuel, 2022, 307: 121816. |
18 | Sarkar M, Kumar A, Tumuluru J S, et al. Gasification performance of switchgrass pretreated with torrefaction and densification[J]. Applied Energy, 2014, 127: 194-201. |
19 | 聂其红, 孙绍增, 李争起, 等. 褐煤混煤燃烧特性的热重分析法研究[J]. 燃烧科学与技术, 2001, 7(1): 72-76. |
Nie Q H, Sun S Z, Li Z Q, et al. Thermogravimetric analysis on the combustion characteristics of brown coal blends[J].Journal of Combustion Science and Technology, 2001, 7(1): 72-76. | |
20 | 刘国伟, 董芃, 韩亚芬, 等. 富氧条件下煤燃烧特性的热重法实验研究 [J]. 哈尔滨工业大学学报, 2011, 43(1): 5. |
Liu G W, Dong P, Han Y F, et al. Experimental study on combustion characteristics of coals under enrich-oxygen condition by thermo-gravimetric analysis [J] Journal of Harbin Institute of Technology, 2011, 43(1): 5. | |
21 | Li D B, Zhao N, Feng Y X, et al. Thermogravimetric analysis of coal semi-char co-firing with straw in O2/CO2 mixtures[J]. Processes, 2021, 9(8): 1421. |
22 | Wang F J, Zhang S, Chen Z D, et al. Tar reforming using char as catalyst during pyrolysis and gasification of Shengli brown coal[J]. Journal of Analytical and Applied Pyrolysis, 2014, 105: 269-275. |
23 | Zhang S, Chen Z D, Zhang H Y, et al. The catalytic reforming of tar from pyrolysis and gasification of brown coal: effects of parental carbon materials on the performance of char catalysts[J]. Fuel Processing Technology, 2018, 174: 142-148. |
24 | Zeng X, Wang F, Han Z N, et al. Assessment of char property on tar catalytic reforming in a fluidized bed reactor for adopting a two-stage gasification process[J]. Applied Energy, 2019, 248: 115-125. |
25 | Huynh C V, Kong S C. Performance characteristics of a pilot-scale biomass gasifier using oxygen-enriched air and steam[J]. Fuel, 2013, 103: 987-996. |
26 | Fu Q R, Huang Y J, Niu M M, et al. Experimental and predicted approaches for biomass gasification with enriched air-steam in a fluidised bed[J]. Waste Management & Research: the Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 2014, 32(10): 988-996. |
27 | Huang W G, Wang Z T, Duan T H, et al. Effect of oxygen and steam on gasification and power generation in industrial tests of underground coal gasification[J]. Fuel, 2021, 289: 119855. |
28 | Aranda G, Grootjes A J, van der Meijden C M, et al. Conversion of high-ash coal under steam and CO2 gasification conditions [J]. Fuel Processing Technology, 2016, 141: 16-30. |
29 | Kuba M, Havlik F, Kirnbauer F, et al. Influence of bed material coatings on the water-gas-shift reaction and steam reforming of toluene as tar model compound of biomass gasification[J]. Biomass and Bioenergy, 2016, 89: 40-49. |
30 | An P, Han Z N, Wang K J, et al. Process analysis of a two-stage fluidized bed gasification system with and without pre-drying of high-water content coal[J]. The Canadian Journal of Chemical Engineering, 2021, 99(7): 1498-1509. |
31 | Umeki K, Namioka T, Yoshikawa K. The effect of steam on pyrolysis and char reactions behavior during rice straw gasification [J]. Fuel Processing Technology, 2012, 94(1): 53-60. |
32 | 周鸿刚, 孙小利. 高温模拟蒸馏法测定原油和常压渣油的馏分分布[J]. 石油化工应用, 2021, 40(10): 115-121. |
Zhou H G, Sun X L.The determination of distillates distribution in crude oil and atmospheric residue by high temperature simulated distillation method[J]. Petrochemical Industry Application, 2021, 40(10): 115-121. | |
33 | 李斌, 黄亚继, 金保升, 等. 蒸汽煤比对湍动循环流化床煤气化的影响[J]. 东南大学学报(自然科学版), 2009, 39(5):998-1001. |
Li B, Huang Y J, Jin B S, et al. Effect of steam/coal ratio on coal gasification in turbulent circulating fluidized bed [J]. Journal of Southeast University (Natural Science Edition), 2009, 39(5): 998-1001. | |
34 | Upadhyay D S, Panchal K R, Sakhiya A K V, et al. Air-steam gasification of lignite in a fixed bed gasifier: influence of steam to lignite ratio on performance of downdraft gasifier[J]. Energy, 2020, 211: 118187. |
35 | Quintero-Coronel D A, Lenis-Rodas Y A, Corredor L, et al. Co-gasification of biomass and coal in a top-lit updraft fixed bed gasifier: syngas composition and its interchangeability with natural gas for combustion applications[J]. Fuel, 2022, 316: 123394. |
36 | Kurkela E, Kurkela M, Hiltunen I. Pilot-scale development of pressurized fixed-bed gasification for synthesis gas production from biomass residues[J]. Biomass Conversion and Biorefinery, 2021, doi:10.1007/s13399-021-01554-2 . |
37 | Ju F D, Chen H P, Yang H P, et al. Experimental study of a commercial circulated fluidized bed coal gasifier[J]. Fuel Processing Technology, 2010, 91(8): 818-822. |
38 | Rapagná S, Provendier H, Petit C, et al. Development of catalysts suitable for hydrogen or syn-gas production from biomass gasification[J]. Biomass and Bioenergy, 2002, 22(5): 377-388. |
[1] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[2] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[3] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[4] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[5] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[6] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[7] | Chao KANG, Jinpeng QIAO, Shengchao YANG, Chao PENG, Yuanpeng FU, Bin LIU, Jianrong LIU, Aleksandrova TATIANA, Chenlong DUAN. Research progress on activation extraction of valuable metals in coal gangue [J]. CIESC Journal, 2023, 74(7): 2783-2799. |
[8] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[9] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[10] | Lei HUANG, Lingxue KONG, Jin BAI, Huaizhu LI, Zhenxing GUO, Zongqing BAI, Ping LI, Wen LI. Effect of oil shale addition on ash fusion behavior of Zhundong high-sodium coal [J]. CIESC Journal, 2023, 74(5): 2123-2135. |
[11] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[12] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[13] | Yinning ZHANG, Jinqing WANG, Zhi FENG, Mingxiu ZHAN, Xu XU, Guangxue ZHANG, Zuohe CHI. Growth and coalescence behavior of bubbles in porous media under heating condition [J]. CIESC Journal, 2023, 74(4): 1509-1518. |
[14] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
[15] | Qian WANG, Shenyong LI, Shuai KANG, Wei PANG, Longlong HAO, Shenjun QIN. Research progress of pretreatment technology for efficient utilization of coal ash [J]. CIESC Journal, 2023, 74(3): 1010-1032. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||