CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3708-3719.DOI: 10.11949/0438-1157.20220264
• Energy and environmental engineering • Previous Articles Next Articles
Chengyi AI(), Jinshuo QIAO(), Zhenhuan WANG, Wang SUN, Kening SUN
Received:
2022-03-01
Revised:
2022-07-09
Online:
2022-09-06
Published:
2022-08-05
Contact:
Jinshuo QIAO
通讯作者:
乔金硕
作者简介:
艾承燚(1997—),男,硕士研究生,18811377836@163.com
基金资助:
CLC Number:
Chengyi AI, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Kening SUN. Investigation on PrBaFe2O6-δ anode material with in-situ FeNi nanoparticle in direct carbon solid oxide fuel cell[J]. CIESC Journal, 2022, 73(8): 3708-3719.
艾承燚, 乔金硕, 王振华, 孙旺, 孙克宁. 原位析出纳米合金的PrBaFe2O6-δ 基阳极构筑及其在固体碳燃料电池中的应用研究[J]. 化工学报, 2022, 73(8): 3708-3719.
Add to citation manager EndNote|Ris|BibTeX
材料 | 空间群 | a/Å | b/Å | c/Å | V/Å3 |
---|---|---|---|---|---|
合成的PBFT | P4/mmm | 3.936795 | 3.936795 | 7.878303 | 122.101 |
合成的PBFTN | P4/mmm | 3.928727 | 3.928727 | 7.866324 | 121.416 |
H2还原后的PBFTN | P4/mmm | 3.941746 | 3.941746 | 3.941746 | 122.980 |
Table 1 Summary of Rietveld refinement results of XRD data for PBFT and PBFTN samples
材料 | 空间群 | a/Å | b/Å | c/Å | V/Å3 |
---|---|---|---|---|---|
合成的PBFT | P4/mmm | 3.936795 | 3.936795 | 7.878303 | 122.101 |
合成的PBFTN | P4/mmm | 3.928727 | 3.928727 | 7.866324 | 121.416 |
H2还原后的PBFTN | P4/mmm | 3.941746 | 3.941746 | 3.941746 | 122.980 |
材料 | 含量/% | 平均价态 | ||
---|---|---|---|---|
Fe4+ | Fe3+ | Fe2+ | ||
合成的PBFT | 14.9 | 64.9 | 20.2 | 2.95 |
H2还原后的PBFT | 13.5 | 58.9 | 27.6 | 2.87 |
合成的PBFTN | 20.0 | 64.5 | 15.5 | 3.05 |
H2还原后的PBFTN | 18.3 | 61.0 | 20.7 | 2.98 |
Table 2 Fe4+/Fe3+/Fe2+ content in PBFT and PBFTN
材料 | 含量/% | 平均价态 | ||
---|---|---|---|---|
Fe4+ | Fe3+ | Fe2+ | ||
合成的PBFT | 14.9 | 64.9 | 20.2 | 2.95 |
H2还原后的PBFT | 13.5 | 58.9 | 27.6 | 2.87 |
合成的PBFTN | 20.0 | 64.5 | 15.5 | 3.05 |
H2还原后的PBFTN | 18.3 | 61.0 | 20.7 | 2.98 |
材料 | Olat.(Fitting area) | Oads.(Fitting area) | [Oads./(Olat.+Oads.)]/% |
---|---|---|---|
合成的PBFT | 30708 | 41584 | 57.5 |
H2还原后的PBFT | 33947 | 34747 | 50.6 |
合成的PBFTN | 32529 | 43477 | 57.2 |
H2还原后的PBFTN | 28598 | 46487 | 61.9 |
Table 3 XPS analysis of O 1s for PBFT and PBFTN
材料 | Olat.(Fitting area) | Oads.(Fitting area) | [Oads./(Olat.+Oads.)]/% |
---|---|---|---|
合成的PBFT | 30708 | 41584 | 57.5 |
H2还原后的PBFT | 33947 | 34747 | 50.6 |
合成的PBFTN | 32529 | 43477 | 57.2 |
H2还原后的PBFTN | 28598 | 46487 | 61.9 |
1 | Fan J L, Zhang H, Zhang X. Unified efficiency measurement of coal-fired power plants in China considering group heterogeneity and technological gaps[J]. Energy Economics, 2020, 88: 104751. |
2 | Cao D X, Sun Y, Wang G L. Direct carbon fuel cell: fundamentals and recent developments[J]. Journal of Power Sources, 2007, 167(2): 250-257. |
3 | Jiang C R, Ma J J, Corre G, et al. Challenges in developing direct carbon fuel cells[J]. Chemical Society Reviews, 2017, 46(10): 2889-2912. |
4 | Cao T Y, Huang K, Shi Y X, et al. Recent advances in high-temperature carbon–air fuel cells[J]. Energy & Environmental Science, 2017, 10(2): 460-490. |
5 | Zhou W, Jiao Y, Li S D, et al. Anodes for carbon-fueled solid oxide fuel cells[J]. ChemElectroChem, 2016, 3(2): 193-203. |
6 | Rady A C, Giddey S, Badwal S P S, et al. Review of fuels for direct carbon fuel cells[J]. Energy & Fuels, 2012, 26(3): 1471-1488. |
7 | Zhao X Y, Yao Q, Li S Q, et al. Studies on the carbon reactions in the anode of deposited carbon fuel cells[J]. Journal of Power Sources, 2008, 185(1): 104-111. |
8 | Qiao J S, Chen H T, Wang Z H, et al. Enhancing the catalytic activity of Y0.08Sr0.92TiO3– δ anodes through in situ Cu exsolution for direct carbon solid oxide fuel cells[J]. Industrial & Engineering Chemistry Research, 2020, 59(29): 13105-13112. |
9 | Ma M J, Qiao J S, Yang X X, et al. Enhanced stability and catalytic activity on layered perovskite anode for high-performance hybrid direct carbon fuel cells[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12938-12948. |
10 | Li S B, Jiang C R, Liu J, et al. Mechanism of enhanced performance on a hybrid direct carbon fuel cell using sawdust biofuels[J]. Journal of Power Sources, 2018, 383: 10-16. |
11 | Ma M J, Yang X X, Ren R Z, et al. A highly active perovskite anode with an in situ exsolved nanoalloy catalyst for direct carbon solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2021, 9(32): 17327-17335. |
12 | Gür T M. Critical review of carbon conversion in “carbon fuel cells”[J]. Chemical Reviews, 2013, 113(8): 6179-6206. |
13 | Ma M J, Yang X X, Qiao J S, et al. Progress and challenges of carbon-fueled solid oxide fuel cells anode[J]. Journal of Energy Chemistry, 2021, 56: 209-222. |
14 | Cai W Z, Cao D, Zhou M Y, et al. Sulfur-tolerant Fe-doped La0.3Sr0.7TiO3 perovskite as anode of direct carbon solid oxide fuel cells[J]. Energy, 2020, 211: 118958. |
15 | Li J W, Wei B, Wang C Q, et al. High-performance and stable La0.8Sr0.2Fe0.9Nb0.1O3- δ anode for direct carbon solid oxide fuel cells fueled by activated carbon and corn straw derived carbon[J]. International Journal of Hydrogen Energy, 2018, 43(27): 12358-12367. |
16 | Xiao J, Han D, Yu F Y, et al. Characterization of symmetrical SrFe0.75Mo0.25O3- δ electrodes in direct carbon solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2016, 688: 939-945. |
17 | Sengodan S, Choi S, Jun A, et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells[J]. Nature Materials, 2015, 14(2): 205-209. |
18 | Choi S, Yoo S, Kim J, et al. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2- x Fe x O5+ δ [J]. Scientific Reports, 2013, 3: 2426. |
19 | Wang L J, Xie P C, Bian L Z, et al. Performance of Ca-doped GdBa1- x Ca x Fe2O5+ δ (x = 0, 0.1) as cathode materials for IT-SOFC application[J]. Catalysis Today, 2018, 318: 132-136. |
20 | Hou N J, Yao T T, Li P, et al. A-site ordered double perovskite with in situ exsolved core-shell nanoparticles as anode for solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 6995-7005. |
21 | Chen T, Pang S L, Shen X Q, et al. Evaluation of Ba-deficient PrBa1– x Fe2O5+ δ oxides as cathode materials for intermediate-temperature solid oxide fuel cells[J]. RSC Advances, 2016, 6(17): 13829-13836. |
22 | Liu Y Y, Jia L C, Li J, et al. High-performance Ni in situ exsolved Ba(Ce0.9Y0.1)0.8Ni0.2O3- δ /Gd0.1Ce0.9O1.95 composite anode for SOFC with long-term stability in methane fuel[J]. Composites Part B: Engineering, 2020, 193: 108033. |
23 | Zhu T L, Troiani H E, Mogni L V, et al. Ni-substituted Sr(Ti, Fe)O3 SOFC anodes: achieving high performance via metal alloy nanoparticle exsolution[J]. Joule, 2018, 2(3): 478-496. |
24 | Xu C M, Sun W, Ren R Z, et al. A highly active and carbon-tolerant anode decorated with in situ grown cobalt nano-catalyst for intermediate-temperature solid oxide fuel cells[J]. Applied Catalysis B: Environmental, 2021, 282: 119553. |
25 | Yang Y R, Wang Y R, Yang Z B, et al. Co-substituted Sr2Fe1.5Mo0.5O6- δ as anode materials for solid oxide fuel cells: achieving high performance via nanoparticle exsolution[J]. Journal of Power Sources, 2019, 438: 226989. |
26 | Xue S S, Shi N, Wan Y H, et al. Novel carbon and sulfur-tolerant anode material FeNi3@PrBa(Fe, Ni)1.9Mo0.1O5+ δ for intermediate temperature solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2019, 7(38): 21783-21793. |
27 | Cowin P I, Petit C T G, Lan R, et al. Recent progress in the development of anode materials for solid oxide fuel cells[J]. Advanced Energy Materials, 2011, 1(3): 314-332. |
28 | Yang G M, Shen J, Chen Y B, et al. Cobalt-free Ba0.5Sr0.5Fe0.8Cu0.1Ti0.1O3- δ as a bi-functional electrode material for solid oxide fuel cells[J]. Journal of Power Sources, 2015, 298: 184-192. |
29 | Du Z H, Zhao H L, Yi S, et al. High-performance anode material Sr2FeMo0.65Ni0.35O6- δ with in situ exsolved nanoparticle catalyst[J]. ACS Nano, 2016, 10(9): 8660-8669. |
30 | Sun Y F, Zhang Y Q, Hua B, et al. Molybdenum doped Pr0.5Ba0.5MnO3- δ (Mo-PBMO) double perovskite as a potential solid oxide fuel cell anode material[J]. Journal of Power Sources, 2016, 301: 237-241. |
31 | Chen D J, Ran R, Zhang K, et al. Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+ δ cathode on samarium-doped ceria electrolyte[J]. Journal of Power Sources, 2009, 188(1): 96-105. |
32 | Stournari V, ten Donkelaar S F P, Malzbender J, et al. Creep behavior of perovskite-type oxides Ba0.5Sr0.5(Co0.8Fe0.2)1- x Zr x O3- δ [J]. Journal of the European Ceramic Society, 2015, 35(6): 1841-1846. |
33 | Fang S M, Yoo C Y, Bouwmeester H J M. Performance and stability of niobium-substituted Ba0.5Sr0.5Co0.8Fe0.2O3- δ membranes[J]. Solid State Ionics, 2011, 195(1): 1-6. |
34 | Zhai S, Xie H P, Chen B, et al. A rational design of FeNi alloy nanoparticles and carbonate-decorated perovskite as a highly active and coke-resistant anode for solid oxide fuel cells[J]. Chemical Engineering Journal, 2022, 430: 132615. |
35 | Hou Y T, Wang L J, Bian L Z, et al. High performance of Mo-doped La0.6Sr0.4Fe0.9Ni0.1O3- δ perovskites as anode for solid oxide fuel cells[J]. Electrochimica Acta, 2018, 292: 540-545. |
36 | Ding L M, Wang L X, Ding D, et al. Promotion on electrochemical performance of a cation deficient SrCo0.7Nb0.1Fe0.2O3- δ perovskite cathode for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2017, 354: 26-33. |
37 | Merino N A, Barbero B P, Eloy P, et al. La1- x Ca x CoO3 perovskite-type oxides: identification of the surface oxygen species by XPS[J]. Applied Surface Science, 2006, 253(3): 1489-1493. |
38 | Figueiredo J L, Rivera-Utrilla J, Ferro-Garcia M A. Gasification of active carbons of different texture impregnated with nickel, cobalt and iron[J]. Carbon, 1987, 25(5): 703-708. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[3] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[4] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[5] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[6] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[7] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[8] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[9] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[10] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[11] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[12] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[13] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[14] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[15] | Ruiqi LIU, Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA. The construction and application of biosensor based on gold nanoparticles loaded SiO2-nanoflowers [J]. CIESC Journal, 2023, 74(3): 1247-1259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||