1 |
Tan K M, Babu T S, Ramachandaramurthy V K, et al. Empowering smart grid: a comprehensive review of energy storage technology and application with renewable energy integration[J]. Journal of Energy Storage, 2021, 39: 102591.
|
2 |
Dowling J A, Rinaldi K Z, Ruggles T H, et al. Role of long-duration energy storage in variable renewable electricity systems[J]. Joule, 2020, 4(9): 1907-1928.
|
3 |
Shan R, Reagan J, Castellanos S, et al. Evaluating emerging long-duration energy storage technologies[J]. Renewable and Sustainable Energy Reviews, 2022, 159: 112240.
|
4 |
Sepulveda N A, Jenkins J D, Edington A, et al. The design space for long-duration energy storage in decarbonized power systems[J]. Nature Energy, 2021, 6(5): 506-516.
|
5 |
Zhang C K, Li X F. Perspective on organic flow batteries for large-scale energy storage[J]. Current Opinion in Electrochemistry, 2021, 30: 100836.
|
6 |
Kwabi D G, Ji Y, Aziz M J. Electrolyte lifetime in aqueous organic redox flow batteries: a critical review[J]. Chemical Reviews, 2020, 120(14): 6467-6489.
|
7 |
Zhang H M, Lu W J, Li X F. Progress and perspectives of flow battery technologies[J]. Electrochemical Energy Reviews, 2019, 2(3): 492-506.
|
8 |
Luo J, Hu B, Hu M W, et al. Status and prospects of organic redox flow batteries toward sustainable energy storage[J]. ACS Energy Letters, 2019, 4(9): 2220-2240.
|
9 |
Thaller L H. Electrically rechargeable redox flow cells[C]//9th Intersociety Energy Conversion Engineering Conference Proceedings. New York: American Society of Mechanical Engineers, 1974: 924-928.
|
10 |
Chalamala B R, Soundappan T, Fisher G R, et al. Redox flow batteries: an engineering perspective[J]. Proceedings of the IEEE, 2014, 102(6): 976-999.
|
11 |
Yang Z G, Zhang J L, Kintner-Meyer M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613.
|
12 |
Chen Q R, Lv Y G, Yuan Z Z, et al. Organic electrolytes for pH-neutral aqueous organic redox flow batteries[J]. Advanced Functional Materials, 2022, 32(9): 2108777.
|
13 |
Liu Y Z, Chen Q, Sun P, et al. Organic electrolytes for aqueous organic flow batteries[J]. Materials Today Energy, 2021, 20: 100634.
|
14 |
Machado C A, Brown G O, Yang R D, et al. Redox flow battery membranes: improving battery performance by leveraging structure-property relationships[J]. ACS Energy Letters, 2021, 6(1): 158-176.
|
15 |
Li X F, Zhang H M, Mai Z S, et al. Ion exchange membranes for vanadium redox flow battery (VRB) applications[J]. Energy & Environmental Science, 2011, 4(4): 1147-1160.
|
16 |
Lu W J, Yuan Z Z, Zhao Y Y, et al. Porous membranes in secondary battery technologies[J]. Chemical Society Reviews, 2017, 46(8): 2199-2236.
|
17 |
Ran J, Wu L, He B, et al. Ion exchange membranes: new developments and applications[J]. Journal of Membrane Science, 2017, 522: 267-291.
|
18 |
Pärnamäe R, Mareev S, Nikonenko V, et al. Bipolar membranes: a review on principles, latest developments, and applications[J]. Journal of Membrane Science, 2021, 617: 118538.
|
19 |
Yuan Z Z, Li X F, Duan Y Q, et al. Highly stable membranes based on sulfonated fluorinated poly(ether ether ketone)s with bifunctional groups for vanadium flow battery application[J]. Polymer Chemistry, 2015, 6(30): 5385-5392.
|
20 |
Yuan Z Z, Li X F, Zhao Y Y, et al. Mechanism of polysulfone-based anion exchange membranes degradation in vanadium flow battery[J]. ACS Applied Materials & Interfaces, 2015, 7(34): 19446-19454.
|
21 |
Yuan Z Z, Li X F, Duan Y Q, et al. Application and degradation mechanism of polyoxadiazole based membrane for vanadium flow batteries[J]. Journal of Membrane Science, 2015, 488: 194-202.
|
22 |
Zhang H Z, Zhang H M, Li X F, et al. Nanofiltration (NF) membranes: the next generation separators for all vanadium redox flow batteries (VRBs)?[J]. Energy & Environmental Science, 2011, 4(5): 1676-1679.
|
23 |
Xu W J, Long J, Liu J, et al. A novel porous polyimide membrane with ultrahigh chemical stability for application in vanadium redox flow battery[J]. Chemical Engineering Journal, 2022, 428: 131203.
|
24 |
Zhou X J, Xue R, Zhong Y G, et al. Asymmetric porous membranes with ultra-high ion selectivity for vanadium redox flow batteries[J]. Journal of Membrane Science, 2020, 595: 117614.
|
25 |
Wang F R, Zhang Z H, Jiang F J. Dual-porous structured membrane for ion-selection in vanadium flow battery[J]. Journal of Power Sources, 2021, 506: 230234.
|
26 |
Chen D J, Li D D, Li X F. Hierarchical porous poly (ether sulfone) membranes with excellent capacity retention for vanadium flow battery application[J]. Journal of Power Sources, 2017, 353: 11-18.
|
27 |
Che X F, Zhao H, Ren X R, et al. Porous polybenzimidazole membranes with high ion selectivity for the vanadium redox flow battery[J]. Journal of Membrane Science, 2020, 611: 118359.
|
28 |
Wang Z Q, Zhang S H, Liu Q, et al. Pyridinium functionalized poly(phthalazinone ether ketone) with pendant phenyl groups porous membranes for vanadium flow battery application by vapor induced phase separation[J]. Journal of Membrane Science, 2022, 656: 120646.
|
29 |
Chen D J, Liu G Y, Liu J, et al. Porous polybenzimidazole membranes with positive charges enable an excellent anti-fouling ability for vanadium-methylene blue flow battery[J]. Journal of Energy Chemistry, 2022, 68: 247-254.
|
30 |
Ding L M, Wang Y H, Wang L H, et al. Microstructure regulation of porous polybenzimidazole proton conductive membranes for high-performance vanadium redox flow battery[J]. Journal of Membrane Science, 2022, 642: 119934.
|
31 |
Zhao Y Y, Xiang P Y, Wang Y, et al. A high ion-conductive and stable porous membrane for neutral aqueous Zn-based flow batteries[J]. Journal of Membrane Science, 2021, 640: 119804.
|
32 |
Chen D J, Duan W Q, He Y Y, et al. Porous membrane with high selectivity for alkaline quinone-based flow batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(43): 48533-48541.
|
33 |
Shi M Q, Dai Q, Li F, et al. Membranes with well-defined selective layer regulated by controlled solvent diffusion for high power density flow battery[J]. Advanced Energy Materials, 2020, 10(34): 2001382.
|
34 |
Qiao L, Zhang H M, Lu W J, et al. Advanced porous membranes with tunable morphology regulated by ionic strength of nonsolvent for flow battery[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24107-24113.
|
35 |
Qiao L, Zhang H M, Lu W J, et al. Advanced porous membranes with slit-like selective layer for flow battery[J]. Nano Energy, 2018, 54: 73-81.
|
36 |
Yuan Z Z, Duan Y Q, Zhang H Z, et al. Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries[J]. Energy & Environmental Science, 2016, 9(2): 441-447.
|
37 |
Zhang H Z, Ding C, Cao J Y, et al. A novel solvent-template method to manufacture nano-scale porous membranes for vanadium flow battery applications[J]. Journal of Materials Chemistry A, 2014, 2(25): 9524-9531.
|
38 |
Li Y, Zhang H M, Li X F, et al. Porous poly (ether sulfone) membranes with tunable morphology: fabrication and their application for vanadium flow battery[J]. Journal of Power Sources, 2013, 233: 202-208.
|
39 |
Liu T, Yuan J S, Zhen Y H, et al. Porous poly(vinylidene fluoride) (PVDF) membrane with 2D vermiculite nanosheets modification for non-aqueous redox flow batteries[J]. Journal of Membrane Science, 2022, 651: 120468.
|
40 |
Hou X X, Huang K, Xia Y S, et al. Fish‐scale‐like nano‐porous membrane based on zeolite nanosheets for long stable zinc‐based flow battery[J]. AIChE Journal, 2022, 68(9): e17738.
|
41 |
Ling L, Xiao M, Han D M, et al. Porous composite membrane of PVDF/sulfonic silica with high ion selectivity for vanadium redox flow battery[J]. Journal of Membrane Science, 2019, 585: 230-237.
|
42 |
Wei X L, Nie Z M, Luo Q T, et al. Nanoporous polytetrafluoroethylene/silica composite separator as a high-performance all-vanadium redox flow battery membrane[J]. Advanced Energy Materials, 2013, 3(9): 1215-1220.
|
43 |
Zhang H Z, Zhang H M, Li X F, et al. Silica modified nanofiltration membranes with improved selectivity for redox flow battery application[J]. Energy & Environmental Science, 2012, 5(4): 6299-6303.
|
44 |
Chang N N, Yin Y B, Yue M, et al. A cost‐effective mixed matrix polyethylene porous membrane for long‐cycle high power density alkaline zinc-based flow batteries[J]. Advanced Functional Materials, 2019, 29(29): 1901674.
|
45 |
Peng S S, Zhang L Y, Zhang C K, et al. Gradient-distributed metal-organic framework-based porous membranes for nonaqueous redox flow batteries[J]. Advanced Energy Materials, 2018, 8(33): 1802533.
|
46 |
Yuan Z Z, Liu X Q, Xu W B, et al. Negatively charged nanoporous membrane for a dendrite-free alkaline zinc-based flow battery with long cycle life[J]. Nature Communications, 2018, 9: 3731.
|
47 |
Kim R, Kim H G, Doo G, et al. Ultrathin Nafion-filled porous membrane for zinc/bromine redox flow batteries[J]. Scientific Reports, 2017, 7: 10503.
|
48 |
Zhao Y Y, Lu W J, Yuan Z Z, et al. Advanced charged porous membranes with flexible internal crosslinking structures for vanadium flow batteries[J]. Journal of Materials Chemistry A, 2017, 5(13): 6193-6199.
|
49 |
Zhao Y Y, Li M R, Yuan Z Z, et al. Advanced charged sponge-like membrane with ultrahigh stability and selectivity for vanadium flow batteries[J]. Advanced Functional Materials, 2016, 26(2): 210-218.
|
50 |
Yuan Z Z, Dai Q, Zhao Y Y, et al. Polypyrrole modified porous poly(ether sulfone) membranes with high performance for vanadium flow batteries[J]. Journal of Materials Chemistry A, 2016, 4(33): 12955-12962.
|
51 |
Cao J, Yuan Z Z, Li X F, et al. Hydrophilic poly(vinylidene fluoride) porous membrane with well connected ion transport networks for vanadium flow battery[J]. Journal of Power Sources, 2015, 298: 228-235.
|
52 |
Li Y, Zhang H M, Zhang H Z, et al. Hydrophilic porous poly(sulfone) membranes modified by UV-initiated polymerization for vanadium flow battery application[J]. Journal of Membrane Science, 2014, 454: 478-487.
|
53 |
Zhang H Z, Zhang H M, Zhang F X, et al. Advanced charged membranes with highly symmetric spongy structures for vanadium flow battery application[J]. Energy & Environmental Science, 2013, 6(3): 776-781.
|
54 |
Mu D, Yu L H, Yu L W, et al. Toward cheaper vanadium flow batteries: porous polyethylene reinforced membrane with superior durability[J]. ACS Applied Energy Materials, 2018, 1(4): 1641-1648.
|
55 |
Zhao Y Y, Yuan Z Z, Lu W J, et al. The porous membrane with tunable performance for vanadium flow battery: the effect of charge[J]. Journal of Power Sources, 2017, 342: 327-334.
|
56 |
Lin R J, Hernandez B V, Ge L, et al. Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces[J]. Journal of Materials Chemistry A, 2018, 6(2): 293-312.
|
57 |
Hu J, Tang X M, Dai Q, et al. Layered double hydroxide membrane with high hydroxide conductivity and ion selectivity for energy storage device[J]. Nature Communications, 2021, 12: 3409.
|
58 |
Chae I S, Luo T, Moon G H, et al. Ultra-high proton/vanadium selectivity for hydrophobic polymer membranes with intrinsic nanopores for redox flow battery[J]. Advanced Energy Materials, 2016, 6(16): 1600517.
|
59 |
Emelin N F, Jusoh N W C, Ting T M, et al. Surface modification of grafted porous polyvinylidine fluoride membrane with graphene oxide for vanadium redox flow battery[J]. Journal of Physics: Conference Series, 2022, 2259(1): 012016.
|
60 |
Chen Q, Du Y Y, Li K M, et al. Graphene enhances the proton selectivity of porous membrane in vanadium flow batteries[J]. Materials & Design, 2017, 113: 149-156.
|
61 |
Lu W J, Li T Y, Yuan C G, et al. Advanced porous composite membrane with ability to regulate zinc deposition enables dendrite-free and high-areal capacity zinc-based flow battery[J]. Energy Storage Materials, 2022, 47: 415-423.
|
62 |
Thong P T, Ajeya K V, Dhanabalan K, et al. A coupled-layer ion-conducting membrane using composite ionomer and porous substrate for application to vanadium redox flow battery[J]. Journal of Power Sources, 2022, 521: 230912.
|
63 |
Liu T, Zhang C J, Yuan J S, et al. Two-dimensional vermiculite nanosheets-modified porous membrane for non-aqueous redox flow batteries[J]. Journal of Power Sources, 2021, 500: 229987.
|
64 |
Hu J, Yuan C G, Zhi L P, et al. In situ defect-free vertically aligned layered double hydroxide composite membrane for high areal capacity and long-cycle zinc-based flow battery[J]. Advanced Functional Materials, 2021, 31(31): 2102167.
|
65 |
Hua L, Lu W J, Li T Y, et al. A highly selective porous composite membrane with bromine capturing ability for a bromine-based flow battery[J]. Materials Today Energy, 2021, 21: 100763.
|
66 |
Wu J E, Dai Q, Zhang H M, et al. A defect-free MOF composite membrane prepared via in-situ binder-controlled restrained second-growth method for energy storage device[J]. Energy Storage Materials, 2021, 35: 687-694.
|
67 |
Dai Q, Liu Z Q, Huang L, et al. Thin-film composite membrane breaking the trade-off between conductivity and selectivity for a flow battery[J]. Nature Communications, 2020, 11: 13.
|
68 |
Hu J, Yue M, Zhang H M, et al. A boron nitride nanosheets composite membrane for a long-life zinc-based flow battery[J]. Angewandte Chemie International Edition, 2020, 59(17): 6715-6719.
|
69 |
Dai Q, Lu W J, Zhao Y Y, et al. Advanced scalable zeolite “ions-sieving” composite membranes with high selectivity[J]. Journal of Membrane Science, 2020, 595: 117569.
|
70 |
Lee W, Jung M, Serhiichuk D, et al. Layered composite membranes based on porous PVDF coated with a thin, dense PBI layer for vanadium redox flow batteries[J]. Journal of Membrane Science, 2019, 591: 117333.
|
71 |
Yuan Z Z, Zhu X X, Li M R, et al. A highly ion-selective zeolite flake layer on porous membranes for flow battery applications[J]. Angewandte Chemie International Edition, 2016, 55(9): 3058-3062.
|
72 |
Li Y, Li X F, Cao J Y, et al. Composite porous membranes with an ultrathin selective layer for vanadium flow batteries[J]. Chemical Communications, 2014, 50(35): 4596-4599.
|
73 |
Shi M L, Liu L, Tong Y J, et al. Advanced porous polyphenylsulfone membrane with ultrahigh chemical stability and selectivity for vanadium flow batteries[J]. Journal of Applied Polymer Science, 2019, 136(28): 47752.
|
74 |
Lu W J, Yuan Z Z, Zhao Y Y, et al. High-performance porous uncharged membranes for vanadium flow battery applications created by tuning cohesive and swelling forces[J]. Energy & Environmental Science, 2016, 9(7): 2319-2325.
|
75 |
Lu W J, Yuan Z Z, Li M R, et al. Solvent-induced rearrangement of ion-transport channels: a way to create advanced porous membranes for vanadium flow batteries[J]. Advanced Functional Materials, 2017, 27(4): 1604587.
|
76 |
Lu W J, Yuan Z Z, Zhao Y Y, et al. Advanced porous PBI membranes with tunable performance induced by the polymer-solvent interaction for flow battery application[J]. Energy Storage Materials, 2018, 10: 40-47.
|
77 |
Lu W J, Qiao L, Dai Q, et al. Solvent treatment: the formation mechanism of advanced porous membranes for flow batteries[J]. Journal of Materials Chemistry A, 2018, 6(32): 15569-15576.
|
78 |
Lu W J, Zhang H M, Li X. Membranes fabricated by solvent treatment for flow battery: effects of initial structures and intrinsic properties[J]. Journal of Membrane Science, 2019, 577: 212-218.
|