CIESC Journal ›› 2023, Vol. 74 ›› Issue (1): 237-256.DOI: 10.11949/0438-1157.20221076
• Reviews and monographs • Previous Articles Next Articles
Xuqing WANG(), Shenglin YAN, Litao ZHU, Xibao ZHANG, Zhenghong LUO()
Received:
2022-08-01
Revised:
2022-09-15
Online:
2023-03-20
Published:
2023-01-05
Contact:
Zhenghong LUO
通讯作者:
罗正鸿
作者简介:
王煦清(1999—),女,博士研究生,xuqing_wang@sjtu.edu.cn
基金资助:
CLC Number:
Xuqing WANG, Shenglin YAN, Litao ZHU, Xibao ZHANG, Zhenghong LUO. Research progress on the mass transfer process of CO2 absorption by amines in a packed column[J]. CIESC Journal, 2023, 74(1): 237-256.
王煦清, 严圣林, 朱礼涛, 张希宝, 罗正鸿. 填料塔中有机胺吸收CO2气液传质的研究进展[J]. 化工学报, 2023, 74(1): 237-256.
Add to citation manager EndNote|Ris|BibTeX
吸收剂溶质 | 吸收剂浓度/ (kmol·m-3) | 填料种类 | 填料塔 塔高/m | 填料层 高度/m | 填料塔 内径/mm | 液相进料 温度/℃ | 液相流速/ (m3·m-2·h-1) | 惰性气体流速/ (kmol·m-2·h-1) | CO2分压 | CO2负荷/ (mol·(mol 胺)-1) | 气相 温度/℃ | KGav /(kmol·m-3·h-1·kPa-1) | 文献 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEA | 3.0~5.2 | Gempak 4A | — | 0.98/2.21 | 0.1 | 20/37 | 7.6~22.9 | 38.6 | 15.1% | — | — | 0.83~0.91 | [ |
MEA | 3.0 | BX | — | 1.02 | 0.250 | 34~37 | 7.9 | 30.0 | 12.4% | — | — | — | [ |
DEEA | 1.0~4.0 | DX | 1.70 | — | 28.0 | 20~60 | 3.90~11.70 | 30.5~43.52 | 3~15 kPa | 0.05~0.20 | 20~60 | 0.09~0.22 | [ |
MEA/ DEA/ DIPA①/ MDEA②/ AMP | 3.0 | DX | 2.00 | — | 20.0 | — | 4.8~10.0 | 48.2 | 10% | 0/ 0.25/ 0.40 | 25 | 0.85~2.93/ 0.18~1.15/ 0.11~0.45/ 0.02~0.09/ 0.22~0.95 | [ |
MEA | 3.0~7.0 | DX | 0.615~0.825 | — | 20.0 | 30~50 | 5.0~20.0 | 0.43~0.60 m3·m-2·s-1 | 3.7~15.2 kPa | 0.2~0.6 | — | 0.14~3.14 | [ |
MEA | 1.0~3.0 | DX | 2.245 | 2.035 | 25.4 | 25 | 5.26~10.52 | 17.33~24.84 | 13.4%~14.8% | 0.011~0.156 | 25 | 0.07~3.59 | [ |
DEAB | 1.0~3.0 | DX | 2.245 | 2.035 | 25.4 | 25 | 5.26~10.52 | 17.19~24.80 | 14.6%~14.8% | 0.136~0.173 | 25 | 0.06~3.35 | [ |
AMP | 1.1~3.0 | EX | 1.77 | 0.055 | 19.0 | 24 | 6.1~14.6 | 46.2~96.8 | 10 kPa | — | — | 0.16~1.07 | [ |
MEA | 2.0~5.0 | Dixon环 | — | 1.40 | 24.0 | 30~50 | 3.98~9.29 | 24.98~39.45 | 14.8%~15.3% | 0.008~0.230 | 30~50 | 0.26~0.40 | [ |
DETA | 1.0~4.0 | Dixon环 | — | 1.40 | 24.0 | 30~50 | 2.65~7.56 | 28.78~46.62 | 15.1%~15.8% | 0.052~0.819 | 30~50 | 0.25~1.28 | [ |
DMEA | 1.0~4.0 | DX | 1.70 | — | 28.0 | 20~60 | 3.90~11.70 | 26.11~43.52 | 6~20 kPa | 0.05~0.30 | 25 | 0.08~0.15 | [ |
MEA | 3.0 | 拉西环 | 1.80 | — | 25.0 | — | 5.3/10.6/15.9 | — | 5%/10%/15% | 0/0.1/0.2 | — | 0.08~0.59 | [ |
DEAB | 1.0~2.0 | DX | 2.15 | — | 275.0 | 25~40 | 3.90~7.80 | 17.85 | — | 0.09~0.28 | 25~40 | 0.04~0.18 | [ |
MEA (5MPa高压) | 1.0~4.0 | 金属丝网波纹填料 | 2.04 | — | 46.0 | 27~45 | 1.81~4.51 | 18.89~35.08 | 20% | — | — | 0.18~5.29 | [ |
Table 1 Experimental conditions and results for CO2 absorption by pure aqueous solutions of amines in packed column
吸收剂溶质 | 吸收剂浓度/ (kmol·m-3) | 填料种类 | 填料塔 塔高/m | 填料层 高度/m | 填料塔 内径/mm | 液相进料 温度/℃ | 液相流速/ (m3·m-2·h-1) | 惰性气体流速/ (kmol·m-2·h-1) | CO2分压 | CO2负荷/ (mol·(mol 胺)-1) | 气相 温度/℃ | KGav /(kmol·m-3·h-1·kPa-1) | 文献 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEA | 3.0~5.2 | Gempak 4A | — | 0.98/2.21 | 0.1 | 20/37 | 7.6~22.9 | 38.6 | 15.1% | — | — | 0.83~0.91 | [ |
MEA | 3.0 | BX | — | 1.02 | 0.250 | 34~37 | 7.9 | 30.0 | 12.4% | — | — | — | [ |
DEEA | 1.0~4.0 | DX | 1.70 | — | 28.0 | 20~60 | 3.90~11.70 | 30.5~43.52 | 3~15 kPa | 0.05~0.20 | 20~60 | 0.09~0.22 | [ |
MEA/ DEA/ DIPA①/ MDEA②/ AMP | 3.0 | DX | 2.00 | — | 20.0 | — | 4.8~10.0 | 48.2 | 10% | 0/ 0.25/ 0.40 | 25 | 0.85~2.93/ 0.18~1.15/ 0.11~0.45/ 0.02~0.09/ 0.22~0.95 | [ |
MEA | 3.0~7.0 | DX | 0.615~0.825 | — | 20.0 | 30~50 | 5.0~20.0 | 0.43~0.60 m3·m-2·s-1 | 3.7~15.2 kPa | 0.2~0.6 | — | 0.14~3.14 | [ |
MEA | 1.0~3.0 | DX | 2.245 | 2.035 | 25.4 | 25 | 5.26~10.52 | 17.33~24.84 | 13.4%~14.8% | 0.011~0.156 | 25 | 0.07~3.59 | [ |
DEAB | 1.0~3.0 | DX | 2.245 | 2.035 | 25.4 | 25 | 5.26~10.52 | 17.19~24.80 | 14.6%~14.8% | 0.136~0.173 | 25 | 0.06~3.35 | [ |
AMP | 1.1~3.0 | EX | 1.77 | 0.055 | 19.0 | 24 | 6.1~14.6 | 46.2~96.8 | 10 kPa | — | — | 0.16~1.07 | [ |
MEA | 2.0~5.0 | Dixon环 | — | 1.40 | 24.0 | 30~50 | 3.98~9.29 | 24.98~39.45 | 14.8%~15.3% | 0.008~0.230 | 30~50 | 0.26~0.40 | [ |
DETA | 1.0~4.0 | Dixon环 | — | 1.40 | 24.0 | 30~50 | 2.65~7.56 | 28.78~46.62 | 15.1%~15.8% | 0.052~0.819 | 30~50 | 0.25~1.28 | [ |
DMEA | 1.0~4.0 | DX | 1.70 | — | 28.0 | 20~60 | 3.90~11.70 | 26.11~43.52 | 6~20 kPa | 0.05~0.30 | 25 | 0.08~0.15 | [ |
MEA | 3.0 | 拉西环 | 1.80 | — | 25.0 | — | 5.3/10.6/15.9 | — | 5%/10%/15% | 0/0.1/0.2 | — | 0.08~0.59 | [ |
DEAB | 1.0~2.0 | DX | 2.15 | — | 275.0 | 25~40 | 3.90~7.80 | 17.85 | — | 0.09~0.28 | 25~40 | 0.04~0.18 | [ |
MEA (5MPa高压) | 1.0~4.0 | 金属丝网波纹填料 | 2.04 | — | 46.0 | 27~45 | 1.81~4.51 | 18.89~35.08 | 20% | — | — | 0.18~5.29 | [ |
吸收剂 | 吸收剂浓度/ (kmol·m-3) | 填料种类 | 填料塔 塔高/m | 填料层 高度/m | 填料塔 内径/mm | 液相进料 温度/℃ | 液相流速/ (m3·m-2·h-1) | 惰性气体流速 | CO2分压 | CO2负荷/ (mol·(mol 胺)-1) | 气相 温度/℃ | KGav /(kmol· m-3·h-1·kPa-1) | 文献 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEA水溶液/ 甲醇溶液/ 等比例甲醇水溶液 | 5.0 | DX | 0.4 | — | 34.0 | — | 12~98 ml·min-1 | 5/6/7/8/10 L·min-1 | 15% | 0.050~0.300 | 25 | 0.35~2.29/ 2.89~5.36/ 1.60~3.80 | [ |
MEA甲醇水溶液 | 2.5~5.0 | DX | 1.7 | — | 28.0 | 10 | 2.92~16.09 | 24.37~63.54 kmol·m-2·h-1 | 6.7~13.8 kPa | 0~0.373 | — | 0.19~3.70 | [ |
MEA甲醇溶液 | 30%(质量)MEA | BX500/ Mellapale Y500/ 鲍尔环 | 2.5 | — | DN150 | — | 20/30/40 L·h-1 | 3/4/5 m3·h-1 | 15% | — | — | 4.57/ 3.35/ 3.30 | [ |
MEA水溶液/ 甲醇溶液 | 15%~30%(质量)MEA | 鲍尔环 | 2.0 | — | 97.0 | 35~55 | 0.75~1.25 L·min-1 | 50~100 L·min-1 | 5%~15% (物质的量) | — | 27 | 0.60~2.42/ 0.95~5.45 | [ |
MEA环丁砜水溶液 | 30%(质量)MEA& 20%(质量)环丁砜 | Dixon环 | — | 1.21 | 28.0 | 30~60 | 3.90~11.70 | 26.11~43.52 kmol·m-2·h-1 | 9~20 kPa | 0.2~0.4 | — | 0.17~5.63 | [ |
MEA环丁砜水溶液 | 4/5 kmol·m-3 MEA& 5 kmol·m-3环丁砜 | DX | 1.28 | — | 28.0 | 20~60 | 2.92~5.85 | 33.49~48.07 kmol·m-2·h-1 | 12~20 kPa | 0.204~0.437 | 25 | 0.11~7.40 | [ |
MEA甘油水溶液 | 10%/20%/30%(质量)MEA& 5%/10%/15%(质量)甘油 | 拉西环 | 0.5 | — | 50.0 | 30/37.5/45 | 85 ml·min-1 | 4/5/6 L·min-1 | 10% | — | — | 0.31~0.63 | [ |
Table 2 Experimental conditions and results for CO2 absorption by non-pure aqueous solutions of amines in packed column
吸收剂 | 吸收剂浓度/ (kmol·m-3) | 填料种类 | 填料塔 塔高/m | 填料层 高度/m | 填料塔 内径/mm | 液相进料 温度/℃ | 液相流速/ (m3·m-2·h-1) | 惰性气体流速 | CO2分压 | CO2负荷/ (mol·(mol 胺)-1) | 气相 温度/℃ | KGav /(kmol· m-3·h-1·kPa-1) | 文献 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEA水溶液/ 甲醇溶液/ 等比例甲醇水溶液 | 5.0 | DX | 0.4 | — | 34.0 | — | 12~98 ml·min-1 | 5/6/7/8/10 L·min-1 | 15% | 0.050~0.300 | 25 | 0.35~2.29/ 2.89~5.36/ 1.60~3.80 | [ |
MEA甲醇水溶液 | 2.5~5.0 | DX | 1.7 | — | 28.0 | 10 | 2.92~16.09 | 24.37~63.54 kmol·m-2·h-1 | 6.7~13.8 kPa | 0~0.373 | — | 0.19~3.70 | [ |
MEA甲醇溶液 | 30%(质量)MEA | BX500/ Mellapale Y500/ 鲍尔环 | 2.5 | — | DN150 | — | 20/30/40 L·h-1 | 3/4/5 m3·h-1 | 15% | — | — | 4.57/ 3.35/ 3.30 | [ |
MEA水溶液/ 甲醇溶液 | 15%~30%(质量)MEA | 鲍尔环 | 2.0 | — | 97.0 | 35~55 | 0.75~1.25 L·min-1 | 50~100 L·min-1 | 5%~15% (物质的量) | — | 27 | 0.60~2.42/ 0.95~5.45 | [ |
MEA环丁砜水溶液 | 30%(质量)MEA& 20%(质量)环丁砜 | Dixon环 | — | 1.21 | 28.0 | 30~60 | 3.90~11.70 | 26.11~43.52 kmol·m-2·h-1 | 9~20 kPa | 0.2~0.4 | — | 0.17~5.63 | [ |
MEA环丁砜水溶液 | 4/5 kmol·m-3 MEA& 5 kmol·m-3环丁砜 | DX | 1.28 | — | 28.0 | 20~60 | 2.92~5.85 | 33.49~48.07 kmol·m-2·h-1 | 12~20 kPa | 0.204~0.437 | 25 | 0.11~7.40 | [ |
MEA甘油水溶液 | 10%/20%/30%(质量)MEA& 5%/10%/15%(质量)甘油 | 拉西环 | 0.5 | — | 50.0 | 30/37.5/45 | 85 ml·min-1 | 4/5/6 L·min-1 | 10% | — | — | 0.31~0.63 | [ |
吸收剂溶质 | 吸收剂浓度/ (kmol·m-3) | 填料种类 | 填料塔 塔高/m | 填料层高度/m | 填料塔 内径/mm | 液相进料 温度/℃ | 液相流速/ (m3·m-2·h-1) | 惰性气体流速/ (kmol·m-2·h-1) | CO2分压 | CO2负荷/ (mol·(mol 胺)-1) | 气相 温度/℃ | KGav /(kmol· m-3·h-1·kPa-1) | 文献 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEA-MDEA/ DEA-MDEA/ MEA-AMP/ DEA-AMP | 3.0 (摩尔比1∶1) | DX | 2.00 | — | 20.0 | 4.8~10.0 | 48.2 | 10% | 0/ 0.25/ 0.40 | 25 | 0.22~0.46/ 0.17~0.20/ 0.73~0.87/ 0.42~0.44 | [ | |
MEA-MDEA | 3.0~7.0 (摩尔比1∶3、 1∶1和3∶1) | DX | 0.615~0.825 | — | 20.0 | 30.0~50.0 | 5.0~20.0 | 0.43~0.60 m3·m-2·s-1 | 3.7~15.2 kPa | 0.2~0.6 | — | 0.05~3.34 | [ |
MEA-MDEA | 摩尔比0.5∶2.3、0.8∶2.1和1.16∶1.95 | DX | 2.15 | — | 27.5 | 25/30/45 | 2.8/3.8/5.0 | — | — | 0.05/0.17/0.25 | 25 | 0.09~0.28/ 0.18~0.71/ 0.44~0.89 | [ |
PZ-DETA/ AEPZ-DETA | DETA+PZ/ AEPZ共30% (其中PZ/AEPZ占10%) | Dixon环 | — | 0.70 | 39.0 | 30~60 | 6.10~12.36 | 27.39~65.48 | 6.1%~14.1% | ≤0.04 | — | 0.42~0.76/ 0.37~0.72 | [ |
PZ-AMP (0.1~4.0MPa高压) | 20%~40%(质量) (摩尔比1∶4) | 金属丝网波纹填料 | 2.04 | — | 46.0 | 30~45 | 2.89~3.97 | 33~51 | — | — | 30~45 | 0.002~0.02 | [ |
PZ-AMP (0.1~5.0MPa高压) | 30%(质量) [PZ:3%/5%/7%/9%(质量)] | 金属丝网波纹填料 | 2.04 | — | 46.0 | 30 | 2.89~4.33 | 33 | 30%~50% | — | 30 | 0.001~0.02 | [ |
MEA-DEEA | 3.0 (摩尔比1∶1) | Dixon环 | 1.28 | — | 28.0 | 25~50 | 3.90~9.75 | 26.11-39.17 | 6~18 kPa | 0.18~0.32 | 25 | 0.11~0.92 | [ |
MEA-DEEA | 2.0~5.0 (摩尔比1∶1) | DX | — | 1.25 | 28.0 | 30~70 | 3.90~11.70 | 30.47~47.87 | 6~18 kPa | 0.15~0.35 | — | 0.14~2.24 | [ |
MEA-DMEA | 6.0 (摩尔比5∶1) | DX | 1.70 | 1.25 | 28.0 | 20~60 | 2.92~5.85 | 33.49~48.07 | 12~20 kPa | 0.204~0.437 | 25 | 0.03~0.81 | [ |
MEA-1DMA2P① | 6.0 (摩尔比5∶1) | DX | 1.70 | 1.25 | 28.0 | 13.03~50.08 | 2.92~5.85 | 33.49~48.07 | 12~20 kPa | 0.204~0.437 | 25 | 0~5.75 | [ |
Table 3 Experimental conditions and results for CO2 absorption by mixed amine solution in packed column
吸收剂溶质 | 吸收剂浓度/ (kmol·m-3) | 填料种类 | 填料塔 塔高/m | 填料层高度/m | 填料塔 内径/mm | 液相进料 温度/℃ | 液相流速/ (m3·m-2·h-1) | 惰性气体流速/ (kmol·m-2·h-1) | CO2分压 | CO2负荷/ (mol·(mol 胺)-1) | 气相 温度/℃ | KGav /(kmol· m-3·h-1·kPa-1) | 文献 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEA-MDEA/ DEA-MDEA/ MEA-AMP/ DEA-AMP | 3.0 (摩尔比1∶1) | DX | 2.00 | — | 20.0 | 4.8~10.0 | 48.2 | 10% | 0/ 0.25/ 0.40 | 25 | 0.22~0.46/ 0.17~0.20/ 0.73~0.87/ 0.42~0.44 | [ | |
MEA-MDEA | 3.0~7.0 (摩尔比1∶3、 1∶1和3∶1) | DX | 0.615~0.825 | — | 20.0 | 30.0~50.0 | 5.0~20.0 | 0.43~0.60 m3·m-2·s-1 | 3.7~15.2 kPa | 0.2~0.6 | — | 0.05~3.34 | [ |
MEA-MDEA | 摩尔比0.5∶2.3、0.8∶2.1和1.16∶1.95 | DX | 2.15 | — | 27.5 | 25/30/45 | 2.8/3.8/5.0 | — | — | 0.05/0.17/0.25 | 25 | 0.09~0.28/ 0.18~0.71/ 0.44~0.89 | [ |
PZ-DETA/ AEPZ-DETA | DETA+PZ/ AEPZ共30% (其中PZ/AEPZ占10%) | Dixon环 | — | 0.70 | 39.0 | 30~60 | 6.10~12.36 | 27.39~65.48 | 6.1%~14.1% | ≤0.04 | — | 0.42~0.76/ 0.37~0.72 | [ |
PZ-AMP (0.1~4.0MPa高压) | 20%~40%(质量) (摩尔比1∶4) | 金属丝网波纹填料 | 2.04 | — | 46.0 | 30~45 | 2.89~3.97 | 33~51 | — | — | 30~45 | 0.002~0.02 | [ |
PZ-AMP (0.1~5.0MPa高压) | 30%(质量) [PZ:3%/5%/7%/9%(质量)] | 金属丝网波纹填料 | 2.04 | — | 46.0 | 30 | 2.89~4.33 | 33 | 30%~50% | — | 30 | 0.001~0.02 | [ |
MEA-DEEA | 3.0 (摩尔比1∶1) | Dixon环 | 1.28 | — | 28.0 | 25~50 | 3.90~9.75 | 26.11-39.17 | 6~18 kPa | 0.18~0.32 | 25 | 0.11~0.92 | [ |
MEA-DEEA | 2.0~5.0 (摩尔比1∶1) | DX | — | 1.25 | 28.0 | 30~70 | 3.90~11.70 | 30.47~47.87 | 6~18 kPa | 0.15~0.35 | — | 0.14~2.24 | [ |
MEA-DMEA | 6.0 (摩尔比5∶1) | DX | 1.70 | 1.25 | 28.0 | 20~60 | 2.92~5.85 | 33.49~48.07 | 12~20 kPa | 0.204~0.437 | 25 | 0.03~0.81 | [ |
MEA-1DMA2P① | 6.0 (摩尔比5∶1) | DX | 1.70 | 1.25 | 28.0 | 13.03~50.08 | 2.92~5.85 | 33.49~48.07 | 12~20 kPa | 0.204~0.437 | 25 | 0~5.75 | [ |
文献 | KGav 拟合经验式 | 适用体系 |
---|---|---|
[ | CO2-DEEA体系 规整填料 AAD:3% | |
CO2-DEEA体系 规整填料 AAD:8% | ||
[ | CO2-DEAB体系 DX型规整填料 AAD:18% | |
[ | CO2-AMP体系 EX型规整填料 | |
[ | CO2-MEA体系 传统散装填料 | |
[ | CO2-MEA体系 Dixon环形填料 AAD:14% | |
[ | CO2-DETA体系 Dixon环形填料 AAD:16% | |
[ | CO2-DEAB体系 DX型规整填料 AAD:14.57% | |
[ | CO2-MEA&环丁砜体系 Dixon环形填料 AAD:10.2% | |
[ | CO2- DMEA体系 Dixon环形填料 AARD①:4.59% | |
[ | CO2-MEA&环丁砜体系 DX型规整填料 AAD:7.8% | |
[ | CO2-MEA+MDEA体系 Dixon环形填料 AAD:20.9% | |
CO2-MEA+MDEA体系 Dixon环形填料 AAD:21.7% | ||
CO2-MEA+MDEA体系 Dixon环形填料 AAD:22.8% | ||
[ | CO2-PZ+DETA体系 Dixon环形填料 AARD:5.35% | |
CO2-AEPZ+DETA体系 Dixon环形填料 AARD:7.32% | ||
[ | CO2-MEA+DEEA体系 Dixon环形填料 AAD:10.4% | |
[ | CO2-MEA+DMEA体系 DX型规整填料 AARD:9.93% | |
[ | CO2-MEA+1DMA2P体系 DX型规整填料 AARD:9.03% |
Table 4 Semi- or empirical models for KGav
文献 | KGav 拟合经验式 | 适用体系 |
---|---|---|
[ | CO2-DEEA体系 规整填料 AAD:3% | |
CO2-DEEA体系 规整填料 AAD:8% | ||
[ | CO2-DEAB体系 DX型规整填料 AAD:18% | |
[ | CO2-AMP体系 EX型规整填料 | |
[ | CO2-MEA体系 传统散装填料 | |
[ | CO2-MEA体系 Dixon环形填料 AAD:14% | |
[ | CO2-DETA体系 Dixon环形填料 AAD:16% | |
[ | CO2-DEAB体系 DX型规整填料 AAD:14.57% | |
[ | CO2-MEA&环丁砜体系 Dixon环形填料 AAD:10.2% | |
[ | CO2- DMEA体系 Dixon环形填料 AARD①:4.59% | |
[ | CO2-MEA&环丁砜体系 DX型规整填料 AAD:7.8% | |
[ | CO2-MEA+MDEA体系 Dixon环形填料 AAD:20.9% | |
CO2-MEA+MDEA体系 Dixon环形填料 AAD:21.7% | ||
CO2-MEA+MDEA体系 Dixon环形填料 AAD:22.8% | ||
[ | CO2-PZ+DETA体系 Dixon环形填料 AARD:5.35% | |
CO2-AEPZ+DETA体系 Dixon环形填料 AARD:7.32% | ||
[ | CO2-MEA+DEEA体系 Dixon环形填料 AAD:10.4% | |
[ | CO2-MEA+DMEA体系 DX型规整填料 AARD:9.93% | |
[ | CO2-MEA+1DMA2P体系 DX型规整填料 AARD:9.03% |
6 | 杨静怡, 高姣丽, 曹丽琼, 等. CO2液相吸收设备的应用现状与进展[J]. 应用化工, 2021, 50(11): 3095-3098. |
Yang J Y, Gao J L, Cao L Q, et al. Equipment for the liquid absorption of CO2: state of arts[J]. Applied Chemical Industry, 2021, 50(11): 3095-3098. | |
7 | 陈健, 罗伟亮, 李晗. 有机胺吸收二氧化碳的热力学和动力学研究进展[J]. 化工学报, 2014, 65(1): 12-21. |
Chen J, Luo W L, Li H. A review for research on thermodynamics and kinetics of carbon dioxide absorption with organic amines[J]. CIESC Journal, 2014, 65(1): 12-21. | |
8 | 平甜甜, 尹鑫, 董玉, 等. 有机胺非水溶液吸收CO2的动力学研究进展[J]. 化工学报, 2021, 72(8): 3968-3983. |
Ping T T, Yin X, Dong Y, et al. Research progress on reaction kinetics of CO2 with amines in nonaqueous solvents[J]. CIESC Journal, 2021, 72(8): 3968-3983. | |
9 | Rochelle G T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948): 1652-1654. |
10 | Aroonwilas A, Veawab A, Tontiwachwuthikul P. Behavior of the mass-transfer coefficient of structured packings in CO2 absorbers with chemical reactions[J]. Industrial & Engineering Chemistry Research, 1999, 38(5): 2044-2050. |
11 | Afkhamipour M, Mofarahi M. Review on the mass transfer performance of CO2 absorption by amine-based solvents in low- and high-pressure absorption packed columns[J]. RSC Advances, 2017, 7(29): 17857-17872. |
12 | Astaria G, Savage D W, Bisio A. Gas Treating with Chemical Solvents[M]. New York: Wiley, 1983. |
13 | Yu K M K, Curcic I, Gabriel J, et al. Recent advances in CO2 capture and utilization[J]. ChemSusChem, 2008, 1(11): 893-899. |
14 | Maddox R N. Gas and Liquid Sweetening[M]//Gas Conditioning and Processing. Norman: John M. Campbell & Co., 1984. |
15 | Vaidya P D, Kenig E Y. CO2-alkanolamine reaction kinetics: a review of recent studies[J]. Chemical Engineering & Technology, 2007, 30(11): 1467-1474. |
16 | 宿辉, 崔琳. 二氧化碳的吸收方法及机理研究[J]. 环境科学与管理, 2006, 31(8): 79-81. |
Su H, Cui L. Research on absorption method and mechanism of carbon dioxide[J]. Environmental Science and Management, 2006, 31(8): 79-81. | |
17 | Caplow M. Kinetics of carbamate formation and breakdown[J]. Journal of the American Chemical Society, 1968, 90(24): 6795-6803. |
18 | Danckwerts P V. The reaction of CO2 with ethanolamines[J]. Chemical Engineering Science, 1979, 34(4): 443-446. |
19 | Crooks J E, Donnellan J P. Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution[J]. Journal of the Chemical Society, Perkin Transactions 2, 1989(4): 331. |
20 | da Silva E F, Svendsen H F. Ab initio study of the reaction of carbamate formation from CO2 and alkanolamines[J]. Industrial & Engineering Chemistry Research, 2004, 43(13): 3413-3418. |
21 | Donaldson T L, Nguyen Y N. Carbon dioxide reaction kinetics and transport in aqueous amine membranes[J]. Industrial & Engineering Chemistry Fundamentals, 1980, 19(3): 260-266. |
22 | Xu B, Gao H X, Luo X, et al. Mass transfer performance of CO2 absorption into aqueous DEEA in packed columns[J]. International Journal of Greenhouse Gas Control, 2016, 51: 11-17. |
23 | DuPart M S, Bacon T R, Edwards D J. Understanding corrosion in alkanolamine gas treating plants: part 2[J]. Hydrocarbon Processing, 1993, 72(5): 89-94. |
24 | Veawab A, Tontiwachwuthikul P, Bhole S D. Studies of corrosion and corrosion control in a CO2-2-amino-2-methyl-1-propanol (AMP) environment[J]. Industrial & Engineering Chemistry Research, 1997, 36(1): 264-269. |
25 | Chowdhury F A, Okabe H, Yamada H, et al. Synthesis and selection of hindered new amine absorbents for CO2 capture[J]. Energy Procedia, 2011, 4: 201-208. |
26 | Goto K, Okabe H, Chowdhury F A, et al. Development of novel absorbents for CO2 capture from blast furnace gas[J]. International Journal of Greenhouse Gas Control, 2011, 5(5): 1214-1219. |
27 | Sema T, Naami A, Liang Z W, et al. 1D absorption kinetics modeling of CO2-DEAB-H2O system[J]. International Journal of Greenhouse Gas Control, 2013, 12: 390-398. |
28 | Chowdhury F A, Yamada H, Matsuzaki Y, et al. Development of novel synthetic amine absorbents for CO2 capture[J]. Energy Procedia, 2014, 63: 572-579. |
29 | 赵毅, 王永斌, 王添颢. 有机胺法吸收二氧化碳的研究进展[J]. 再生资源与循环经济, 2020, 13(7): 26-29. |
Zhao Y, Wang Y B, Wang T H. Research progress on the absorption of carbon dioxide by organic amine method[J]. Recyclable Resources and Circular Economy, 2020, 13(7): 26-29. | |
30 | 胡亚林, 李水娥, 忤恒, 等. CO2混合胺吸收剂的研究进展[J]. 广州化工, 2013, 41(24): 6-8. |
Hu Y L, Li S E, Wu H, et al. Progress on CO2 blended amine absorbents[J]. Guangzhou Chemical Industry, 2013, 41(24): 6-8. | |
31 | Aghel B, Janati S, Wongwises S, et al. Review on CO2 capture by blended amine solutions[J]. International Journal of Greenhouse Gas Control, 2022, 119: 103715. |
32 | Chakravarty T, Phukan U, Weilund R. Reaction of acid gases with mixtures of amines[J]. Chemical Engineering Progress, 1985, 81(4): 32-36. |
33 | Aroonwilas A, Veawab A. Characterization and comparison of the CO2 absorption performance into single and blended alkanolamines in a packed column[J]. Industrial & Engineering Chemistry Research, 2004, 43(9): 2228-2237. |
34 | Gao H X, Wu Z Y, Liu H L, et al. Experimental studies on the effect of tertiary amine promoters in aqueous monoethanolamine (MEA) solutions on the absorption/stripping performances in post-combustion CO2 capture[J]. Energy & Fuels, 2017, 31(12): 13883-13891. |
35 | Ramachandran N, Aboudheir A, Idem R, et al. Kinetics of the absorption of CO2 into mixed aqueous loaded solutions of monoethanolamine and methyldiethanolamine[J]. Industrial & Engineering Chemistry Research, 2006, 45(8): 2608-2616. |
36 | Setameteekul A, Aroonwilas A, Veawab A. Statistical factorial design analysis for parametric interaction and empirical correlations of CO2 absorption performance in MEA and blended MEA/MDEA processes[J]. Separation and Purification Technology, 2008, 64(1): 16-25. |
1 | Page B, Turan G, Zapantis A, et al. The global status of CCS 2020: vital to achieve net zero[R]. Global CCS Institute, 2020. |
2 | Kanniche M, Gros-Bonnivard R, Jaud P, et al. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture[J]. Applied Thermal Engineering, 2010, 30(1): 53-62. |
3 | Mirzaei S, Shamiri A, Aroua M K. A review of different solvents, mass transfer, and hydrodynamics for postcombustion CO2 capture[J]. Reviews in Chemical Engineering, 2015, 31(6): 521-561. |
4 | Liang Z W, Fu K Y, Idem R, et al. Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents[J]. Chinese Journal of Chemical Engineering, 2016, 24(2): 278-288. |
5 | 张艺峰, 王茹洁, 邱明英, 等. CO2捕集技术的研究现状[J]. 应用化工, 2021, 50(4): 1082-1086. |
Zhang Y F, Wang R J, Qiu M Y, et al. CO2 capture technology research status[J]. Applied chemical Industry, 2021, 50(4): 1082-1086. | |
37 | Horng S Y, Li M H. Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine + triethanolamine[J]. Industrial & Engineering Chemistry Research, 2002, 41(2): 257-266. |
38 | Huang Y M, Soriano A N, Caparanga A R, et al. Kinetics of absorption of carbon dioxide in 2-amino-2-methyl-l-propanol + N-methyldiethanolamine + water[J]. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(1): 76-85. |
39 | Mandal B P, Biswas A K, Bandyopadhyay S S. Absorption of carbon dioxide into aqueous blends of 2-amino-2-methyl-1-propanol and diethanolamine[J]. Chemical Engineering Science, 2003, 58(18): 4137-4144. |
40 | Samanta A, Bandyopadhyay S S. Absorption of carbon dioxide into piperazine activated aqueous N-methyldiethanolamine[J]. Chemical Engineering Journal, 2011, 171(3): 734-741. |
41 | Usubharatana P, Tontiwachwuthikul P. Enhancement factor and kinetics of CO2 capture by MEA-methanol hybrid solvents[J]. Energy Procedia, 2009, 1(1): 95-102. |
42 | Sema T, Naami A, Usubharatana P, et al. Mass transfer of CO2 absorption in hybrid MEA-methanol solvents in packed column[J]. Energy Procedia, 2013, 37: 883-889. |
43 | Fu K Y, Rongwong W, Liang Z W, et al. Experimental analyses of mass transfer and heat transfer of post-combustion CO2 absorption using hybrid solvent MEA-MeOH in an absorber[J]. Chemical Engineering Journal, 2015, 260: 11-19. |
44 | Gao J, Yin J, Zhu F F, et al. Orthogonal test design to optimize the operating parameters of a hybrid solvent MEA-Methanol in an absorber column packed with three different packing: Sulzer BX500, Mellapale Y500 and Pall rings 16 × 16 for post-combustion CO2 capture[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 68: 218-223. |
45 | Rashidi H, Valeh-e-Sheyda P, Sahraie S. A multiobjective experimental based optimization to the CO2 capture process using hybrid solvents of MEA-MeOH and MEA-water[J]. Energy, 2020, 190: 116430. |
46 | Barzagli F, Mani F, Peruzzini M. Efficient CO2 absorption and low temperature desorption with non-aqueous solvents based on 2-amino-2-methyl-1-propanol (AMP)[J]. International Journal of Greenhouse Gas Control, 2013, 16: 217-223. |
47 | Ramazani R, Samsami A, Jahanmiri A, et al. Characterization of monoethanolamine + potassium lysinate blend solution as a new chemical absorbent for CO2 capture[J]. International Journal of Greenhouse Gas Control, 2016, 51: 29-35. |
48 | Shamiri A, Shafeeyan M S, Tee H C, et al. Absorption of CO2 into aqueous mixtures of glycerol and monoethanolamine[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 605-613. |
49 | Svendsen H F, Hessen E T, Mejdell T. Carbon dioxide capture by absorption, challenges and possibilities[J]. Chemical Engineering Journal, 2011, 171(3): 718-724. |
50 | Hu L. Carbon dioxide separation by phase enhanced gas-liquid absorption[R]. Office of Scientific and Technical Information (OSTI), 2004. |
51 | 王涛, 刘飞, 方梦祥, 等. 两相吸收剂捕集二氧化碳技术研究进展[J]. 中国电机工程学报, 2021, 41(4): 1186-1196. |
Wang T, Liu F, Fang M X, et al. Research progress in biphasic solvent for CO2 capture technology[J]. Proceedings of the CSEE, 2021, 41(4): 1186-1196. | |
52 | Papadopoulos A I, Tzirakis F, Tsivintzelis I, et al. Phase-change solvents and processes for postcombustion CO2 capture: a detailed review[J]. Industrial & Engineering Chemistry Research, 2019, 58(13): 5088-5111. |
53 | Zhang S H, Shen Y, Wang L D, et al. Phase change solvents for post-combustion CO2 capture: principle, advances, and challenges[J]. Applied Energy, 2019, 239: 876-897. |
54 | Wang M, Lawal A, Stephenson P, et al. Post-combustion CO2 capture with chemical absorption: a state-of-the-art review[J]. Chemical Engineering Research and Design, 2011, 89(9): 1609-1624. |
55 | Zaman M, Lee J H. Carbon capture from stationary power generation sources: a review of the current status of the technologies[J]. Korean Journal of Chemical Engineering, 2013, 30(8): 1497-1526. |
56 | Henley E J, Seader J D. Equilibrium Stage Separation Operations in Chemical Engineering[M]. New York: Wiley, 1981. |
57 | Seader J. The rate-based approach for modeling staged separations[J]. Chemical Engineering Progress, 1989, 85(10): 41-49. |
58 | Afkhamipour M, Mofarahi M. Comparison of rate-based and equilibrium-stage models of a packed column for post-combustion CO2 capture using 2-amino-2-methyl-1-propanol (AMP) solution[J]. International Journal of Greenhouse Gas Control, 2013, 15: 186-199. |
59 | Whitman W G. The two-film theory of gas absorption[J]. International Journal of Heat and Mass Transfer, 1962, 5(5): 429-433. |
60 | 贾绍义,柴诚敬. 化工传质与分离过程[M]. 2版. 北京: 化学工业出版社, 2007. |
Jia S Y, Chai C J. Chemical Mass Transfer and Separation Processes[M]. 2nd ed. Beijing: Chemical Industry Press, 2007. | |
61 | Higbie R. The rate of absorption of a pure gas into a still liquid during short periods of exposure[J]. Trans. AIChE, 1935, 31: 365-389. |
62 | Danckwerts P V. Significance of liquid-film coefficients in gas absorption[J]. Industrial & Engineering Chemistry, 1951, 43(6): 1460-1467. |
63 | Treybal R E. Mass Transfer Operations[M]. Malaysia: McGraw Hill, 1980, 466. |
64 | Liang Z H, Sanpasertparnich T, Tontiwachwuthikul P P, et al. Part 1: Design, modeling and simulation of post-combustion CO2 capture systems using reactive solvents[J]. Carbon Management, 2011, 2(3): 265-288. |
65 | Maneeintr K, Idem R O, Tontiwachwuthikul P, et al. Comparative mass transfer performance studies of CO2 absorption into aqueous solutions of DEAB and MEA[J]. Industrial & Engineering Chemistry Research, 2010, 49(6): 2857-2863. |
66 | Raynal L, Rayana F B, Royon-Lebeaud A. Use of CFD for CO2 absorbers optimum design: from local scale to large industrial scale[J]. Energy Procedia, 2009, 1(1): 917-924. |
67 | Haroun Y, Raynal L, Legendre D. Mass transfer and liquid hold-up determination in structured packing by CFD[J]. Chemical Engineering Science, 2012, 75: 342-348. |
68 | Raynal L, Boyer C, Ballaguet J P. Liquid holdup and pressure drop determination in structured packing with CFD simulations[J]. The Canadian Journal of Chemical Engineering, 2004, 82(5): 871-879. |
69 | Ataki A. Wetting of structured packing elements-CFD and experiment[D]. Germany: Technical University of Kaiserslautern, 2006. |
70 | Haroun Y, Legendre D, Raynal L. Direct numerical simulation of reactive absorption in gas-liquid flow on structured packing using interface capturing method[J]. Chemical Engineering Science, 2010, 65(1): 351-356. |
71 | Raynal L, Royon-Lebeaud A. A multi-scale approach for CFD calculations of gas-liquid flow within large size column equipped with structured packing[J]. Chemical Engineering Science, 2007, 62(24): 7196-7204. |
72 | Macfarlan L H, Phan M T, Eldridge R B. Methodologies for predicting the mass transfer performance of structured packings with computational fluid dynamics: a review[J]. Chemical Engineering and Processing-Process Intensification, 2022, 172: 108798. |
73 | 刘宁馨, 洪伟荣, 郭雅琼. 规整填料上传质现象的CFD模拟研究综述[J]. 化工机械, 2020, 47(5): 584-590. |
Liu N X, Hong W R, Guo Y Q. Review of CFD simulation of the mass transfer within structured packing elements[J]. Chemical Engineering & Machinery, 2020, 47(5): 584-590. | |
74 | Petre C F, Larachi F, Iliuta I, et al. Pressure drop through structured packings: breakdown into the contributing mechanisms by CFD modeling[J]. Chemical Engineering Science, 2003, 58(1): 163-177. |
75 | Dong B, Yuan X G, Yu K T. Determination of liquid mass-transfer coefficients for the absorption of CO2 in alkaline aqueous solutions in structured packing using numerical simulations[J]. Chemical Engineering Research and Design, 2017, 124: 238-251. |
76 | Macfarlan L H, Phan M T, Eldridge R B. Structured packing geometry study for liquid-phase mass transfer and hydrodynamic performance using CFD[J]. Chemical Engineering Science, 2022, 249: 117353. |
77 | Sun B, Zhu M, Liu B T, et al. Investigation of falling liquid film flow on novel structured packing[J]. Industrial & Engineering Chemistry Research, 2013, 52(13): 4950-4956. |
78 | Owens S A, Perkins M R, Eldridge R B, et al. Computational fluid dynamics simulation of structured packing[J]. Industrial & Engineering Chemistry Research, 2013, 52(5): 2032-2045. |
79 | Tung V X, Dhir V K. A hydrodynamic model for two-phase flow through porous media[J]. International Journal of Multiphase Flow, 1988, 14(1): 47-65. |
80 | Asendrych D, Niegodajew P, Drobniak S. CFD modelling of CO2 capture in a packed bed by chemical absorption[J]. Chemical and Process Engineering, 2013, 34(2): 269-282. |
81 | Haroun Y, Legendre D, Raynal L. Volume of fluid method for interfacial reactive mass transfer: application to stable liquid film[J]. Chemical Engineering Science, 2010, 65(10): 2896-2909. |
82 | Haroun Y, Raynal L, Alix P. Prediction of effective area and liquid hold-up in structured packings by CFD[J]. Chemical Engineering Research and Design, 2014, 92(11): 2247-2254. |
83 | Hu J G, Yang X G, Yu J G, et al. Numerical simulation of carbon dioxide (CO2) absorption and interfacial mass transfer across vertically wavy falling film[J]. Chemical Engineering Science, 2014, 116: 243-253. |
84 | Sebastia-Saez D, Gu S, Ranganathan P, et al. 3D modeling of hydrodynamics and physical mass transfer characteristics of liquid film flows in structured packing elements[J]. International Journal of Greenhouse Gas Control, 2013, 19: 492-502. |
85 | Aroonwilas A, Tontiwachwuthikul P. Mass transfer coefficients and correlation for CO2 absorption into 2-amino-2-methyl-1-propanol (AMP) using structured packing[J]. Industrial & Engineering Chemistry Research, 1998, 37(2): 569-575. |
86 | Kohl A L, Nielsen R. Gas Purification[M]. Amsterdam: Elsevier, 1997. |
87 | Ennis B, Litster J. Perry’s Chemical Engineers’ Handbook[M]. New York: McGraw-Hill, 1997. |
88 | Fu K Y, Sema T, Liang Z W, et al. Investigation of mass-transfer performance for CO2 absorption into diethylenetriamine (DETA) in a randomly packed column[J]. Industrial & Engineering Chemistry Research, 2012, 51(37): 12058-12064. |
89 | Wen L, Liu H L, Rongwong W, et al. Comparison of overall gas-phase mass transfer coefficient for CO2 absorption between tertiary amines in a randomly packed column[J]. Chemical Engineering & Technology, 2015, 38(8): 1435-1443. |
90 | Naami A, Edali M, Sema T, et al. Mass transfer performance of CO2 absorption into aqueous solutions of 4-diethylamino-2-butanol, monoethanolamine, and N-methyldiethanolamine[J]. Industrial & Engineering Chemistry Research, 2012, 51(18): 6470-6479. |
91 | Ma S C, Zang B, Song H H, et al. Research on mass transfer of CO2 absorption using ammonia solution in spray tower[J]. International Journal of Heat and Mass Transfer, 2013, 67: 696-703. |
92 | Zou L Y, Gao H X, Wu Z Y, et al. Fast screening of amine/physical solvent systems and mass transfer studies on efficient aqueous hybrid MEA/sulfolane solution for postcombustion CO2 capture[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(3): 649-664. |
93 | Ling H, Gao H X, Liang Z W. Comprehensive solubility of N2O and mass transfer studies on an effective reactive N, N-dimethylethanolamine (DMEA) solvent for post-combustion CO2 capture[J]. Chemical Engineering Journal, 2019, 355: 369-379. |
94 | Limlertchareonwanit T, Maneeintr K, Charinpanitkul T. Measurement of mass transfer coefficient of CO2-amine system from absorption process[J]. IOP Conference Series: Materials Science and Engineering, 2020, 859(1): 012011. |
95 | Sema T, Naami A, Fu K Y, et al. Comprehensive mass transfer and reaction kinetics studies of a novel reactive 4-diethylamino-2-butanol solvent for capturing CO2 [J]. Chemical Engineering Science, 2013, 100: 183-194. |
96 | Abdul Halim H N, Shariff A M, Tan L S, et al. Mass transfer performance of CO2 absorption from natural gas using monoethanolamine (MEA) in high pressure operations[J]. Industrial & Engineering Chemistry Research, 2015, 54(5): 1675-1680. |
97 | Yin Y H, Qiu A Q, Gao H X, et al. Experimental study of the mass transfer behavior of carbon dioxide absorption into ternary phase change solution in a packed tower[J]. Chinese Journal of Chemical Engineering, 2022, 43: 135-142. |
98 | Valeh-e-Sheyda P, Barati J. Mass transfer performance of carbon dioxide absorption in a packed column using monoethanoleamine-Glycerol as a hybrid solvent[J]. Process Safety and Environmental Protection, 2021, 146: 54-68. |
99 | Naami A, Sema T, Edali M, et al. Analysis and predictive correlation of mass transfer coefficient KG av of blended MDEA-MEA for use in post-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control, 2013, 19: 3-12. |
100 | Sheng M P, Liu C G, Ge C Y, et al. Mass-transfer performance of CO2 absorption with aqueous diethylenetriamine-based solutions in a packed column with Dixon rings[J]. Industrial & Engineering Chemistry Research, 2016, 55(40): 10788-10793. |
101 | Halim H N A, Shariff A M, Bustam M A. High pressure CO2 absorption from natural gas using piperazine promoted 2-amino-2-methyl-1-propanol in a packed absorption column[J]. Separation and Purification Technology, 2015, 152: 87-93. |
102 | Hairul N A H, Shariff A M, Bustam M A. Mass transfer performance of 2-amino-2-methyl-1-propanol and piperazine promoted 2-amino-2-methyl-1-propanol blended solvent in high pressure CO2 absorption[J]. International Journal of Greenhouse Gas Control, 2016, 49: 121-127. |
103 | Gao H X, Xu B, Han L, et al. Mass transfer performance and correlations for CO2 absorption into aqueous blended of DEEA/MEA in a random packed column[J]. AIChE Journal, 2017, 63(7): 3048-3057. |
104 | Liao H Y, Gao H X, Xu B, et al. Mass transfer performance studies of aqueous blended DEEA-MEA solution using orthogonal array design in a packed column[J]. Separation and Purification Technology, 2017, 183: 117-126. |
105 | Ling H, Liu S, Wang T Y, et al. Characterization and correlations of CO2 absorption performance into aqueous amine blended solution of monoethanolamine (MEA) and N, N-dimethylethanolamine (DMEA) in a packed column[J]. Energy & Fuels, 2019, 33(8): 7614-7625. |
106 | Ling H, Liu S, Gao H X, et al. Solubility of N2O, equilibrium solubility, mass transfer study and modeling of CO2 absorption into aqueous monoethanolamine (MEA)/1-dimethylamino-2-propanol (1DMA2P) solution for post-combustion CO2 capture[J]. Separation and Purification Technology, 2020, 232: 115957. |
107 | Fourati M, Roig V, Raynal L. Liquid dispersion in packed columns: experiments and numerical modeling[J]. Chemical Engineering Science, 2013, 100: 266-278. |
108 | Niegodajew P, Asendrych D, Marek M, et al. Modelling liquid redistribution in a packed bed[J]. Journal of Physics: Conference Series, 2014, 530: 012053. |
109 | Niegodajew P, Asendrych D. Amine based CO2 capture - CFD simulation of absorber performance[J]. Applied Mathematical Modelling, 2016, 40(23/24): 10222-10237. |
110 | Krótki A, Więcław-Solny L, Tatarczuk A, et al. Laboratory studies of CO2 absorption with the use of 30% aqueous monoethanolamine solution[J]. Arch. Combust., 2012, 12: 195-203. |
111 | Pham D A, Lim Y I, Jee H, et al. Effect of ship tilting and motion on amine absorber with structured-packing for CO2 removal from natural gas[J]. AIChE Journal, 2015, 61(12): 4412-4425. |
112 | Pham D A, Lim Y I, Jee H, et al. Porous media Eulerian computational fluid dynamics (CFD) model of amine absorber with structured-packing for CO2 removal[J]. Chemical Engineering Science, 2015, 132: 259-270. |
113 | Kim J, Pham D A, Lim Y I. Gas-liquid multiphase computational fluid dynamics (CFD) of amine absorption column with structured-packing for CO2 capture[J]. Computers & Chemical Engineering, 2016, 88: 39-49. |
114 | Notz R, Mangalapally H P, Hasse H. Post combustion CO2 capture by reactive absorption: pilot plant description and results of systematic studies with MEA[J]. International Journal of Greenhouse Gas Control, 2012, 6: 84-112. |
115 | Gbadago D Q, Oh H T, Oh D H, et al. CFD simulation of a packed bed industrial absorber with interbed liquid distributors[J]. International Journal of Greenhouse Gas Control, 2020, 95: 102983. |
116 | Pan W X, Galvin J, Huang W L, et al. Device-scale CFD modeling of gas-liquid multiphase flow and amine absorption for CO2 capture[J]. Greenhouse Gases: Science and Technology, 2018, 8(3): 603-620. |
117 | Mandal B P, Guha M, Biswas A K, et al. Removal of carbon dioxide by absorption in mixed amines: modelling of absorption in aqueous MDEA/MEA and AMP/MEA solutions[J]. Chemical Engineering Science, 2001, 56(21/22): 6217-6224. |
118 | Liao C H, Li M H. Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine+N-methyldiethanolamine[J]. Chemical Engineering Science, 2002, 57(21): 4569-4582. |
119 | Edali M, Aboudheir A, Idem R. Kinetics of carbon dioxide absorption into mixed aqueous solutions of MDEA and MEA using a laminar jet apparatus and a numerically solved 2D absorption rate/kinetics model[J]. International Journal of Greenhouse Gas Control, 2009, 3(5): 550-560. |
120 | Fu K Y, Chen G Y, Sema T, et al. Experimental study on mass transfer and prediction using artificial neural network for CO2 absorption into aqueous DETA[J]. Chemical Engineering Science, 2013, 100: 195-202. |
121 | Zhang X, Fu K Y, Liang Z W, et al. Experimental studies of regeneration heat duty for CO2 desorption from aqueous DETA solution in a randomly packed column[J]. Energy Procedia, 2014, 63: 1497-1503. |
122 | Luo X, Fu K Y, Yang Z, et al. Experimental studies of reboiler heat duty for CO2 desorption from triethylenetetramine (TETA) and triethylenetetramine (TETA) + N-methyldiethanolamine (MDEA)[J]. Industrial & Engineering Chemistry Research, 2015, 54(34): 8554-8560. |
123 | Xu B, Gao H X, Chen M L, et al. Experimental study of regeneration performance of aqueous N, N-diethylethanolamine solution in a column packed with Dixon ring random packing[J]. Industrial & Engineering Chemistry Research, 2016, 55(31): 8519-8526. |
124 | Zeng Q, Guo Y C, Niu Z Q, et al. Mass transfer coefficients for CO2 absorption into aqueous ammonia solution using a packed column[J]. Industrial & Engineering Chemistry Research, 2011, 50(17): 10168-10175. |
125 | Tan L S, Shariff A M, Lau K K, et al. Factors affecting CO2 absorption efficiency in packed column: a review[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(6): 1874-1883. |
126 | Zeng Q, Guo Y C, Niu Z Q, et al. The absorption rate of CO2 by aqueous ammonia in a packed column[J]. Fuel Processing Technology, 2013, 108: 76-81. |
127 | Strigle R F. Random Packings and Packed Towers: Design and Applications[M]. United States: Gulf Publishing Co., 1987. |
128 | Kim I, Svendsen H F. Comparative study of the heats of absorption of post-combustion CO2 absorbents[J]. International Journal of Greenhouse Gas Control, 2011, 5(3): 390-395. |
129 | Chang H, Shih C M. Simulation and optimization for power plant flue gas CO2 absorption-stripping systems[J]. Separation Science and Technology, 2005, 40(4): 877-909. |
130 | Kean J A, Turner H, Price B. Structured packing proven superior for TEG gas drying[J]. Oil & Gas Journal, 1991, 89(38): 41-46. |
131 | Fernandes J, Lisboa P F, Simões P C, et al. Application of CFD in the study of supercritical fluid extraction with structured packing: wet pressure drop calculations[J]. The Journal of Supercritical Fluids, 2009, 50(1): 61-68. |
[1] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[2] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[3] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[4] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[5] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[6] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[7] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[8] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[9] | Xinyue WANG, Junjie WANG, Sixian CAO, Cui WANG, Lingkun LI, Hongyu WU, Jing HAN, Hao WU. Effect of glass primary container surface modification on monoclonal antibody aggregates induced by mechanical stress [J]. CIESC Journal, 2023, 74(6): 2580-2588. |
[10] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[11] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
[12] | Mujin LI, Song HU, Depan SHI, Peng ZHAO, Rui GAO, Jinlong LI. A process for offgas absorption and purification of 1,2-butylene oxide [J]. CIESC Journal, 2023, 74(4): 1607-1618. |
[13] | Can YANG, Xueqi SUN, Minghua SHANG, Jian ZHANG, Xiangping ZHANG, Shaojuan ZENG. Research status and prospect of CO2 absorption and separation by phase-change ionic liquid systems [J]. CIESC Journal, 2023, 74(4): 1419-1432. |
[14] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[15] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||