CIESC Journal ›› 2023, Vol. 74 ›› Issue (12): 4810-4819.DOI: 10.11949/0438-1157.20230878
• Thermodynamics • Previous Articles Next Articles
Peiwei YAN(), Manzheng ZHANG, Meng XIAO, Zheng MIAO()
Received:
2023-08-24
Revised:
2023-10-10
Online:
2024-02-19
Published:
2023-12-25
Contact:
Zheng MIAO
通讯作者:
苗政
作者简介:
闫沛伟(1998—),男,硕士研究生,yanpeiwei@ncepu.edu.cn
基金资助:
CLC Number:
Peiwei YAN, Manzheng ZHANG, Meng XIAO, Zheng MIAO. Study on the control strategy of a geothermal organic Rankine cycle system[J]. CIESC Journal, 2023, 74(12): 4810-4819.
闫沛伟, 张曼铮, 肖猛, 苗政. 地热能有机朗肯循环系统控制策略研究[J]. 化工学报, 2023, 74(12): 4810-4819.
Add to citation manager EndNote|Ris|BibTeX
工质 | 蒸发压力/MPa | 净输出功/kW | 热效率/% | 蒸发器换热量/kW | 冷凝器换热量/kW | 泵功/kW |
---|---|---|---|---|---|---|
R600a | 2.48 | 984.03 | 10.42 | 9442.38 | 8458.35 | 121.04 |
R600 | 1.53 | 911.54 | 9.65 | 9442.38 | 8530.84 | 61.34 |
R245fa | 1.28 | 919.54 | 9.74 | 9442.38 | 8522.84 | 45.12 |
R123 | 0.65 | 842.95 | 8.93 | 9442.38 | 8599.43 | 22.03 |
R601a | 0.66 | 879.76 | 9.32 | 9442.38 | 8562.62 | 25.05 |
R601 | 0.51 | 865.16 | 9.16 | 9442.38 | 8577.23 | 18.59 |
R141b | 0.50 | 794.01 | 8.41 | 9442.38 | 8648.37 | 14.93 |
Table 1 Cycle performance parameters of working fluid
工质 | 蒸发压力/MPa | 净输出功/kW | 热效率/% | 蒸发器换热量/kW | 冷凝器换热量/kW | 泵功/kW |
---|---|---|---|---|---|---|
R600a | 2.48 | 984.03 | 10.42 | 9442.38 | 8458.35 | 121.04 |
R600 | 1.53 | 911.54 | 9.65 | 9442.38 | 8530.84 | 61.34 |
R245fa | 1.28 | 919.54 | 9.74 | 9442.38 | 8522.84 | 45.12 |
R123 | 0.65 | 842.95 | 8.93 | 9442.38 | 8599.43 | 22.03 |
R601a | 0.66 | 879.76 | 9.32 | 9442.38 | 8562.62 | 25.05 |
R601 | 0.51 | 865.16 | 9.16 | 9442.38 | 8577.23 | 18.59 |
R141b | 0.50 | 794.01 | 8.41 | 9442.38 | 8648.37 | 14.93 |
状态点 | 位置 | 温度/ ℃ | 压力/ kPa | 焓/ (kJ/kg) | 熵/ (kJ/(kg·K)) | 流量/ (t/h) |
---|---|---|---|---|---|---|
1 | 膨胀机入口 | 100.47 | 1280 | 474.53 | 1.791 | 158 |
2 | 膨胀机出口 | 59.65 | 287 | 452.57 | 1.81 | 158 |
3 | 冷凝器露点 | 44.2 | 287 | 436.7 | 1.76 | 158 |
6 | 泵出口 | 44.2 | 1280 | 259.33 | 1.20 | 158 |
7 | 预热段出口 | 100.47 | 1280 | 340.53 | 1.43 | 158 |
9 | 热源入口 | 160 | 1000 | 675.7 | 1.94 | 100 |
10 | 热源出口 | 80 | 1000 | 335.8 | 1.08 | 100 |
11 | 冷却水入口 | 25 | 500 | 105.3 | 0.367 | 734 |
12 | 冷却水出口 | 35 | 500 | 147.1 | 0.504 | 734 |
Table 2 ORC system main state point parameters
状态点 | 位置 | 温度/ ℃ | 压力/ kPa | 焓/ (kJ/kg) | 熵/ (kJ/(kg·K)) | 流量/ (t/h) |
---|---|---|---|---|---|---|
1 | 膨胀机入口 | 100.47 | 1280 | 474.53 | 1.791 | 158 |
2 | 膨胀机出口 | 59.65 | 287 | 452.57 | 1.81 | 158 |
3 | 冷凝器露点 | 44.2 | 287 | 436.7 | 1.76 | 158 |
6 | 泵出口 | 44.2 | 1280 | 259.33 | 1.20 | 158 |
7 | 预热段出口 | 100.47 | 1280 | 340.53 | 1.43 | 158 |
9 | 热源入口 | 160 | 1000 | 675.7 | 1.94 | 100 |
10 | 热源出口 | 80 | 1000 | 335.8 | 1.08 | 100 |
11 | 冷却水入口 | 25 | 500 | 105.3 | 0.367 | 734 |
12 | 冷却水出口 | 35 | 500 | 147.1 | 0.504 | 734 |
换热器相区 | 传热系数 |
---|---|
蒸发器单相区[ | |
蒸发器两相区[ | |
热源侧[ | |
冷凝器单相区[ | |
冷凝器两相区[ | |
冷源侧[ |
Table 3 The heat transfer coefficient of each phase region
换热器相区 | 传热系数 |
---|---|
蒸发器单相区[ | |
蒸发器两相区[ | |
热源侧[ | |
冷凝器单相区[ | |
冷凝器两相区[ | |
冷源侧[ |
参数 | 数值 |
---|---|
进汽压力/kPa | 1280 |
进汽温度/℃ | 100.47 |
进汽流量/(t/h) | 158 |
排汽压力/kPa | 287 |
排汽温度/℃ | 59.65 |
排汽流量/(t/h) | 158 |
额定功率/kW | 919.54 |
转速/(r/min) | 3000 |
Table 4 Design parameters of the expander
参数 | 数值 |
---|---|
进汽压力/kPa | 1280 |
进汽温度/℃ | 100.47 |
进汽流量/(t/h) | 158 |
排汽压力/kPa | 287 |
排汽温度/℃ | 59.65 |
排汽流量/(t/h) | 158 |
额定功率/kW | 919.54 |
转速/(r/min) | 3000 |
1 | Yan D, Yang F B, Yang F F, et al. Identifying the key system parameters of the organic Rankine cycle using the principal component analysis based on an experimental database[J]. Energy Conversion and Management, 2021, 240: 114252. |
2 | Yu X L, Li Z, Lu Y J, et al. Investigation of an innovative cascade cycle combining a trilateral cycle and an organic Rankine cycle (TLC-ORC) for industry or transport application[J]. Energies, 2018, 11(11): 3032. |
3 | Braimakis K, Karellas S. Exergetic optimization of double stage organic Rankine cycle (ORC)[J]. Energy, 2018, 149: 296-313. |
4 | Tchanche B F, Papadakis G, Lambrinos G, et al. Fluid selection for a low-temperature solar organic Rankine cycle[J]. Applied Thermal Engineering, 2009, 29(11/12): 2468-2476. |
5 | Hu S Z, Li J, Yang F B, et al. Multi-objective optimization of organic Rankine cycle using hydrofluorolefins (HFOs) based on different target preferences[J]. Energy, 2020, 203: 117848. |
6 | Świerzewski M, Kalina J. Optimisation of biomass-fired cogeneration plants using ORC technology[J]. Renewable Energy, 2020, 159: 195-214. |
7 | Vera D, Baccioli A, Jurado F, et al. Modeling and optimization of an ocean thermal energy conversion system for remote islands electrification[J]. Renewable Energy, 2020, 162: 1399-1414. |
8 | Frate G F, Baccioli A, Lucchesi E, et al. ORC optimal design through clusterization for waste heat recovery in anaerobic digestion plants[J]. Applied Sciences, 2021, 11(6): 2762. |
9 | Liu P, Shu G Q, Tian H. How to approach optimal practical organic Rankine cycle (OP-ORC) by configuration modification for diesel engine waste heat recovery[J]. Energy, 2019, 174: 543-552. |
10 | 吴双应, 易甜甜, 肖兰. 基于多目标函数的亚临界有机朗肯循环的参数优化和性能分析[J]. 化工学报, 2014, 65(10): 4078-4085. |
Wu S Y, Yi T T, Xiao L. Parametric optimization and performance analysis of subcritical organic Rankine cycle based on multi-objective function[J]. CIESC Journal, 2014, 65(10): 4078-4085. | |
11 | Ping X, Yang F B, Zhang H G, et al. Introducing machine learning and hybrid algorithm for prediction and optimization of multistage centrifugal pump in an ORC system[J]. Energy, 2021, 222: 120007. |
12 | Chen G B, An Q S, Wang Y Z, et al. Performance prediction and working fluids selection for organic Rankine cycle under reduced temperature[J]. Applied Thermal Engineering, 2019, 153: 95-103. |
13 | Pei G, Li J, Li Y Z, et al. Construction and dynamic test of a small-scale organic Rankine cycle[J]. Energy, 2011, 36(5): 3215-3223. |
14 | 张红光, 杨宇鑫, 孟凡骁, 等. 有机朗肯循环系统中工质泵的运行性能[J]. 化工学报, 2017, 68(9): 3573-3579. |
Zhang H G, Yang Y X, Meng F X, et al. Running performance of working fluid pump for organic Rankine cycle system[J]. CIESC Journal, 2017, 68(9): 3573-3579. | |
15 | Bekiloğlu H E, Bedir H, Anlaş G. Multi-objective optimization of ORC parameters and selection of working fluid using preliminary radial inflow turbine design[J]. Energy Conversion and Management, 2019, 183: 833-847. |
16 | 李鹏, 韩中合, 贾晓强, 等. 动态透平效率对有机朗肯循环系统性能的影响[J]. 化工学报, 2019, 70(4): 1532-1541. |
Li P, Han Z H, Jia X Q, et al. Influence of dynamic turbine efficiency on performance of organic Rankine cycle system[J]. CIESC Journal, 2019, 70(4): 1532-1541. | |
17 | 王羽鹏, 梁俊伟, 罗向龙, 等. 基于神经网络的有机朗肯循环过程及循环性能计算方法[J]. 化工学报, 2019, 70(9): 3256-3266. |
Wang Y P, Liang J W, Luo X L, et al. Novel prediction method of process and system performance for organic Rankine cycle based on neural network[J]. CIESC Journal, 2019, 70(9): 3256-3266. | |
18 | Dal Magro F, Jimenez-Arreola M, Romagnoli A. Improving energy recovery efficiency by retrofitting a PCM-based technology to an ORC system operating under thermal power fluctuations[J]. Applied Energy, 2017, 208: 972-985. |
19 | Xie H, Yang C. Dynamic behavior of Rankine cycle system for waste heat recovery of heavy duty diesel engines under driving cycle[J]. Applied Energy, 2013, 112: 130-141. |
20 | Da Lio L, Manente G, Lazzaretto A. A mean-line model to predict the design efficiency of radial inflow turbines in organic Rankine cycle (ORC) systems[J]. Applied Energy, 2017, 205: 187-209. |
21 | Shi Y, Lin R Z, Wu X L, et al. Dual-mode fast DMC algorithm for the control of ORC based waste heat recovery system[J]. Energy, 2022, 244: 122664. |
22 | Zhang W, Wang E H, Meng F X, et al. Closed-loop PI control of an organic Rankine cycle for engine exhaust heat recovery[J]. Energies, 2020, 13(15): 3817. |
23 | Wang X, Wang R, Jin M, et al. Control of superheat of organic Rankine cycle under transient heat source based on deep reinforcement learning[J]. Applied Energy, 2020, 278: 115637. |
24 | Usman M, Imran M, Lee D H, et al. Experimental investigation of off-grid organic Rankine cycle control system adapting sliding pressure strategy under proportional integral with feed-forward and compensator[J]. Applied Thermal Engineering, 2017, 110: 1153-1163. |
25 | Quoilin S, Aumann R, Grill A, et al. Dynamic modeling and optimal control strategy of waste heat recovery organic Rankine cycles[J]. Applied Energy, 2011, 88(6): 2183-2190. |
26 | Wei D H, Lu X S, Lu Z, et al. Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery[J]. Energy Conversion and Management, 2007, 48(4): 1113-1119. |
27 | Bergman T L. Analysis of heat transfer enhancement in minichannel heat sinks with turbulent flow using H2O-Al2O3 nanofluids[J]. Journal of Electronic Packaging, 2009, 131(2): 1. |
28 | Gungor K E, Winterton R H S. A general correlation for flow boiling in tubes and annuli[J]. International Journal of Heat and Mass Transfer, 1986, 29(3): 351-358. |
29 | Kern D Q. Process Heat Transfer[M]. New York: McGraw-Hill, 1950. |
30 | Hewitt G F, Shires G L, Bott T R. Process Heat Transfer[M]. Boca Raton: CRC Press, 1994. |
31 | Lemort V, Quoilin S, Cuevas C, et al. Testing and modeling a scroll expander integrated into an organic Rankine cycle[J]. Applied Thermal Engineering, 2009, 29(14/15): 3094-3102. |
[1] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[2] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[3] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[4] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[5] | Yurong DANG, Chunlan MO, Kerui SHI, Yingcong FANG, Ziyang ZHANG, Zuoshun LI. Comprehensive evaluation model combined with genetic algorithm for the study on the performance of ORC system with zeotropic mixture [J]. CIESC Journal, 2023, 74(5): 1884-1895. |
[6] | Zihao QI, Wenqi ZHONG, Xi CHEN, Guanwen ZHOU, Xiaoliang ZHAO, Meijing XIN, Yi CHEN, Yongchang ZHU. Research on dynamic characteristics of cement raw meal decomposition process based on hybrid modeling [J]. CIESC Journal, 2022, 73(5): 2039-2051. |
[7] | Cheng ZHANG, Lizhi PAN, Yuan LI. Fault detection and diagnosis method based on weighted statistical feature KICA [J]. CIESC Journal, 2022, 73(2): 827-837. |
[8] | JIANG Jiatong, HU Bin, WANG Ruzhu, LIU Hua, ZHANG Zhiping, LI Hongbo. Dynamic simulation of horizontal condenser of R1233zd(E) high temperature heat pump [J]. CIESC Journal, 2021, 72(S1): 98-105. |
[9] | WANG Jiaxing, ZHAO Jiarui, LI Site, FU Yuan, LIU Fengjie, WEI Chang. Influence of different discharge valve flow characteristics on ejection process [J]. CIESC Journal, 2021, 72(S1): 318-325. |
[10] | Zihang LI, Zhanbo WANG, Zheng MIAO, Xianbing JI. Working fluid selection and thermo-economic analysis of sub-critical organic Rankine cycle [J]. CIESC Journal, 2021, 72(9): 4487-4495. |
[11] | CAO Jian, FENG Xin, JI Xiaoyan, LU Xiaohua. Study on the theoretical limit performance of multi-pressure evaporation ORC based on zeotropic mixture [J]. CIESC Journal, 2021, 72(7): 3780-3787. |
[12] | SUN Haoran, LYU Zhongyuan, WU Chengyun, HU Haitao. Dynamic simulation model of enhanced vapor injection refrigeration system for aircraft [J]. CIESC Journal, 2021, 72(5): 2484-2492. |
[13] | JIANG Jinbo, TENG Liming, MENG Xiangkai, LI Jiyun, PENG Xudong. Dynamic characteristics of supercritical CO2 dry gas seal based on multi variables perturbation [J]. CIESC Journal, 2021, 72(4): 2190-2202. |
[14] | RONG-YANG Yiming, WU Qiaoxian, ZHOU Xia, FANG Song, WANG Kai, QIU Limin, ZHI Xiaoqin. Research on optimization of self-utilization performance of air compression waste heat in air separation system [J]. CIESC Journal, 2021, 72(3): 1654-1666. |
[15] | Kun LUO, Xiaodong MAO, Liping PANG. Cockpit thermal control performance of new helicopter heat pump air conditioning system [J]. CIESC Journal, 2020, 71(S1): 187-193. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||