CIESC Journal ›› 2023, Vol. 74 ›› Issue (12): 4988-4996.DOI: 10.11949/0438-1157.20230769
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Qisheng DING1(), Jing TAN1,2(), Lisheng CHENG1,2, Zhenghe ZHANG3, Lijian SONG1, Weimin YANG1,2
Received:
2023-07-24
Revised:
2023-10-20
Online:
2024-02-19
Published:
2023-12-25
Contact:
Jing TAN
丁奇胜1(), 谭晶1,2(), 程礼盛1,2, 张政和3, 宋立健1, 杨卫民1,2
通讯作者:
谭晶
作者简介:
丁奇胜(1998—),男,硕士研究生,2021210347@mail.buct.edu.cn
CLC Number:
Qisheng DING, Jing TAN, Lisheng CHENG, Zhenghe ZHANG, Lijian SONG, Weimin YANG. Effect of gas field pressure on the microstructure and mechanical properties of graphite fibers prepared by laser irradiation[J]. CIESC Journal, 2023, 74(12): 4988-4996.
丁奇胜, 谭晶, 程礼盛, 张政和, 宋立健, 杨卫民. 气场压力对激光辐照制备石墨纤维微观结构与力学性能影响[J]. 化工学报, 2023, 74(12): 4988-4996.
Add to citation manager EndNote|Ris|BibTeX
去浆碳纤维 | 直径/µm | 拉伸强度/MPa | 杨氏模量/GPa |
---|---|---|---|
CF-0-0 | 7~7.5 | 3100 | 225 |
Table 1 Performance parameters of CF-0-0 sample
去浆碳纤维 | 直径/µm | 拉伸强度/MPa | 杨氏模量/GPa |
---|---|---|---|
CF-0-0 | 7~7.5 | 3100 | 225 |
样品 | C/% | N/% | H/% | S/% |
---|---|---|---|---|
CF-0-0 | 92.68 | 5.28 | 1.286 | 0.862 |
CF-200-0 | 95.20 | 1.85 | 0.198 | 0.226 |
CF-200-0.1 | 94.60 | 1.75 | 0.21 | 0.265 |
CF-200-0.2 | 95.12 | 1.76 | 0.385 | 0.412 |
CF-200-0.3 | 94.40 | 2.02 | 0.769 | 0.621 |
CF-260-0 | 96.37 | 1.34 | 0.163 | 0.223 |
CF-260-0.1 | 95.70 | 1.42 | 0.122 | 0.322 |
CF-260-0.2 | 95.85 | 1.45 | 0.65 | 0.452 |
CF-260-0.3 | 95.53 | 1.98 | 0.82 | 0.763 |
Table 2 Element content of CF-P-S series samples
样品 | C/% | N/% | H/% | S/% |
---|---|---|---|---|
CF-0-0 | 92.68 | 5.28 | 1.286 | 0.862 |
CF-200-0 | 95.20 | 1.85 | 0.198 | 0.226 |
CF-200-0.1 | 94.60 | 1.75 | 0.21 | 0.265 |
CF-200-0.2 | 95.12 | 1.76 | 0.385 | 0.412 |
CF-200-0.3 | 94.40 | 2.02 | 0.769 | 0.621 |
CF-260-0 | 96.37 | 1.34 | 0.163 | 0.223 |
CF-260-0.1 | 95.70 | 1.42 | 0.122 | 0.322 |
CF-260-0.2 | 95.85 | 1.45 | 0.65 | 0.452 |
CF-260-0.3 | 95.53 | 1.98 | 0.82 | 0.763 |
样品 | D峰 | G峰 | ID | IG | R | ||
---|---|---|---|---|---|---|---|
峰位值/cm-1 | FWHM | 峰位值/cm-1 | FWHM | ||||
CF-200-0 | 1356.13 | 44.37 | 1591.77 | 48.18 | 9068.05 | 13335.36 | 0.68 |
CF-200-0.1 | 1356.21 | 39.30 | 1589.13 | 39.21 | 7047.10 | 12812.90 | 0.55 |
CF-200-0.2 | 1353.33 | 38.25 | 1587.90 | 26.35 | 5271.12 | 14514.88 | 0.36 |
CF-200-0.3 | 1354.25 | 39.10 | 1588.78 | 28.07 | 3697.69 | 10829.36 | 0.34 |
CF-260-0 | 1346.57 | 42.37 | 1581.34 | 32.85 | 1410.91 | 7506.16 | 0.19 |
CF-260-0.1 | 1351.52 | 38.43 | 1586.13 | 25.76 | 1320.99 | 13293.37 | 0.10 |
CF-260-0.2 | 1351.94 | 36.13 | 1587.22 | 23.92 | 989.19 | 21982.01 | 0.04 |
CF-260-0.3 | 1357.43 | 34.46 | 1585.07 | 22.80 | 1039.34 | 18868.15 | 0.05 |
Table 3 Raman spectrum fitting parameters of CF-P-S series samples
样品 | D峰 | G峰 | ID | IG | R | ||
---|---|---|---|---|---|---|---|
峰位值/cm-1 | FWHM | 峰位值/cm-1 | FWHM | ||||
CF-200-0 | 1356.13 | 44.37 | 1591.77 | 48.18 | 9068.05 | 13335.36 | 0.68 |
CF-200-0.1 | 1356.21 | 39.30 | 1589.13 | 39.21 | 7047.10 | 12812.90 | 0.55 |
CF-200-0.2 | 1353.33 | 38.25 | 1587.90 | 26.35 | 5271.12 | 14514.88 | 0.36 |
CF-200-0.3 | 1354.25 | 39.10 | 1588.78 | 28.07 | 3697.69 | 10829.36 | 0.34 |
CF-260-0 | 1346.57 | 42.37 | 1581.34 | 32.85 | 1410.91 | 7506.16 | 0.19 |
CF-260-0.1 | 1351.52 | 38.43 | 1586.13 | 25.76 | 1320.99 | 13293.37 | 0.10 |
CF-260-0.2 | 1351.94 | 36.13 | 1587.22 | 23.92 | 989.19 | 21982.01 | 0.04 |
CF-260-0.3 | 1357.43 | 34.46 | 1585.07 | 22.80 | 1039.34 | 18868.15 | 0.05 |
1 | Zhou H H, Yu Q, Peng Q L, et al. Catalytic graphitization of carbon fibers with electrodeposited Ni-B alloy coating[J]. Materials Chemistry and Physics, 2008, 110(2/3): 434-439. |
2 | Zhang Z H, Song L J, Cheng L S, et al. Accelerated graphitization of PAN-based carbon fibers: K+-effected graphitization via laser irradiation[J]. ACS Sustainable Chemistry and Engineering, 2022, 10(24): 8086-8093. |
3 | Wang H T, Wang Y, Li T, et al. Gradient distribution of radial structure of PAN-based carbon fiber treated by high temperature[J]. Progress in Natural Science: Materials International, 2014, 24(1): 31-34. |
4 | He D M, Yao Y H, Xu S H, et al. Effect of anodization on the graphitization of PAN-based carbon fibers of PAN-based carbon fibers[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2011, 26(5): 926-930. |
5 | Greene M L, Schwartz R W, Treleaven J W. Short residence time graphitization of mesophase pitch-based carbon fibers[J]. Carbon, 2002, 40(8): 1217-1226. |
6 | Xiao P, Gong Y J, Li D F, et al. In-situ SAXS study on pore structure change of PAN-based carbon fiber during graphitization[J]. Microporous and Mesoporous Materials, 2021, 323: 111201. |
7 | Wei X Y, Zhang W J, Chen L W, et al. Evaluation of graphitization and tensile property in microwave plasma treated carbon fiber[J]. Diamond and Related Materials, 2022, 126: 109094. |
8 | Zhou H H, Peng Q L, Huang Z H, et al. Catalytic graphitization of PAN-based carbon fibers with electrodeposited Ni-Fe alloy[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(3): 581-587. |
9 | 陈力, 吕春祥, 蒋俊祺, 等. 聚丙烯腈凝胶纤维渗硼对炭纤维的石墨化过程的影响[J]. 新型炭材料, 2019, 34(1): 95-104. |
Chen L, Lu C X, Jiang J Q, et al. Influence of boron on the graphitization of carbon fibers prepared by boron-modified polyacrylonitrile gel fibers[J]. New Carbon Materials, 2019, 34(1): 95-104. | |
10 | Barton B E, Behr M J, Patton J T, et al. High-modulus low-cost carbon fibers from polyethylene enabled by boron catalyzed graphitization[J]. Small, 2017, 13(36): 1701926. |
11 | Ming X, Wei A, Liu Y, et al. 2D-topology-seeded graphitization for highly thermally conductive carbon fibers[J]. Advanced Materials, 2022, 34(28): 2201867. |
12 | Yang Y, Chen J, Shi Y P. Recent developments in modifying polypropylene hollow fibers for sample preparation[J]. TRAC-Trends in Analytical Chemistry, 2015, 64: 109-117. |
13 | Wang H D, Liu J H, Zhang X, et al. Raman measurements of optical absorption and heat transfer coefficients of a single carbon fiber in atmosphere environment[J]. International Journal of Heat and Mass Transfer, 2014, 70: 40-45. |
14 | Lott P, Stollenwerk J, Wissenbach K. Laser-based production of carbon fibers[J]. Journal of Laser Applications, 2015, 27(S2): S29106. |
15 | Zhang Z H, Yang W M, Cheng L S, et al. Carbon fibers with high electrical conductivity: laser irradiation of mesophase pitch filaments obtains high graphitization degree[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(48): 17629-17638. |
16 | Janićijević M, Srećković M, Kaluđerović B, et al. Characterization of laser beam interaction with carbon materials[J]. Laser Physics, 2013, 23(5): 056002. |
17 | Yao L B, Yang W M, Li S L, et al. Graphitization of PAN-based carbon fibers by CO2 laser irradiation[J]. Carbon letters, 2017, 24: 97-102. |
18 | 钱鑫, 张永刚, 王雪飞. 高温石墨化对碳纤维结构的影响[J]. 高科技纤维与应用, 2016, 41(2): 24-27. |
Qian X, Zhang Y G, Wang X F. Effect of high temperature graphitization on the structure of carbon fibers[J]. Hi-Tech Fiber & Application, 2016, 41(2): 24-27. | |
19 | Sha Y, Yang W M, Li S, et al. Laser induced graphitization of PAN-based carbon fibers[J]. RSC Advances, 2018, 8(21): 11543-11550. |
20 | 刘福杰, 王浩静, 范立东. PAN碳纤维在高温石墨化过程中密度的变化规律[J]. 化工新型材料, 2007, 35(1): 43-45. |
Liu F J, Wang H J, Fan L D. The change of density under high temperature heat treatment in PAN-based carbon fibers[J]. New Chemical Materials, 2007, 35(1): 43-45. | |
21 | Voisey K T, Fouquet S, Roy D, et al. Fibre swelling during laser drilling of carbon fibre composites[J]. Optics and Lasers in Engineering, 2006, 44(11): 1185-1197. |
22 | 高爱君, 靳玉伟, 刘钟铃, 等. 碳纤维石墨化过程中的气胀[C]//复合材料: 创新与可持续发展(上册). 长沙, 2010: 286-290. |
Gao A J, Jin Y W, Liu Z L, et al. Inflation during the graphitization process of carbon fibers[C]//Composite Materials: Innovation and Sustainable Development (Volume 1. Changsha, 2010: 286-290. | |
23 | 徐樑华, 曹维宇, 胡良全. 聚丙烯腈基碳纤维[M]. 北京: 国防工业出版社, 2018: 156-162. |
Xu L H, Cao W Y, Hu L Q. Polyacrylonitrile Based Carbon Fiber[M]. Beijing: National DefenseIndustry Press, 2018: 156-162. | |
24 | Baba S, Goto T, Cho S H, et al. Effect of nitrogen gas pressure during heat treatment on the morphology of silicon nitride fibers synthesized by carbothermal nitridation[J]. Journal of Asian Ceramic Societies, 2018, 6(4): 401-408. |
25 | 刘杰, 牛鹏飞, 薛岩, 等. 炭化气场压力对PAN基碳纤维聚集态结构和力学性能的关联性研究[J]. 复合材料学报, 2013, 30(S1): 7-14. |
Liu J, Niu P F, Xue Y, et al. Study on the correlation between the pressure of carbonization gas field and the aggregate structure and mechanical properties of PAN-based carbon fibers[J]. Acta Materiae Compositae Sinica, 2013, 30(S1): 7-14. | |
26 | Li D F, Wang H J, Wang X K. Raman spectra of PAN-based carbon fibers during graphitization[J]. Spectroscopy and Spectral Analysis, 2007, 27(11): 2249-2253. |
27 | Ye C, Wu H, Zhu S P, et al. Microstructure of high thermal conductivity mesophase pitch-based carbon fibers[J]. New Carbon Materials, 2021, 36(5): 980-985. |
28 | 葛曷一, 陈娟, 柳华实, 等. 聚丙烯腈预氧化纤维碳化中的结构演变与碳纤维微观结构[J]. 化工学报, 2009, 60(1): 238-243. |
Ge H Y, Chen J, Liu H S, et al. Structural evolvement of PAN oxidized fiber during carbonization and microstructure of carbon fiber[J]. CIESC Journal, 2009, 60(1): 238-243. | |
29 | Gao A J, Su C J, Luo S, et al. Densification mechanism of polyacrylonitrile-based carbon fiber during heat treatment[J]. Journal of Physics and Chemistry of Solids, 2011, 72(10): 1159-1164. |
30 | 黎三洋. PAN基碳纤维高温激光石墨化工艺及连续化生产设备的研究[D]. 北京: 北京化工大学, 2018. |
Li S Y. Study on high temperature laser graphitization process and continuous production equipment of PAN-based carbon fiber[D]. Beijing: Beijing University of Chemical Technology, 2018. | |
31 | Qin X Y, Lu Y G, Xiao H, et al. A comparison of the effect of graphitization on microstructures and properties of polyacrylonitrile and mesophase pitch-based carbon fibers[J]. Carbon, 2012, 50(12): 4459-4469. |
32 | Ramos A, Cameán I, García A B. Graphitization thermal treatment of carbon nanofibers[J]. Carbon, 2013, 59: 2-32. |
33 | 钱鑫, 王雪飞, 郑凯杰, 等. PAN基高模量碳纤维成型过程中的结构性能关联性[J]. 化工进展, 2019, 38(5): 2276-2283. |
Qian X, Wang X F, Zheng K J, et al. Relationship between micro-structure and macro-properties during the formation of PAN-based high modulus carbon fibers[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2276-2283. | |
34 | Wang H, Wang H, Li D, et al. The effect of graphitization temperature on the microstructure and mechanical properties of carbon fibers[J]. New Carbon Materials, 2005, 20(2): 157-163. |
35 | Li D H, Lu C X, Hao J J, et al. A comparative analysis of polyacrylonitrile-based carbon fibers(Ⅰ): Microstructures[J]. New Carbon Materials, 2020, 35(6): 793-801. |
36 | Bao C G, Zeng Q, Li F J, et al. Effect of boron doping on the interlayer spacing of graphite[J]. Materials, 2022, 15(12): 4203. |
37 | Stankiewicz R, Badowski M. Influence of heaf treatment of carbon fibers on their microcrystalline structure and thermal stability[J]. Przemysl Chemiczny, 2001, 80(4): 145-149. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Weiqi JIN, Yuerong WU, Xia WANG, Li LI, Su QIU, Pan YUAN, Minghe WANG. Progress in infrared imaging detection technology and domestic equipment for industrial gas leakage in chemical industry parks [J]. CIESC Journal, 2023, 74(S1): 32-44. |
[3] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[4] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[5] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[6] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[7] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[8] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[9] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[10] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[11] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[12] | Wenxiang NI, Jing ZHAO, Bo LI, Xiaolin WEI, Dongyin WU, Di LIU, Qiang WANG. Study on waste heat boiler ash deposition characteristics in sensible heat recovery process of converter gas [J]. CIESC Journal, 2023, 74(8): 3485-3493. |
[13] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[14] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[15] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||