CIESC Journal ›› 2023, Vol. 74 ›› Issue (12): 5016-5026.DOI: 10.11949/0438-1157.20230929

• Material science and engineering, nanotechnology • Previous Articles     Next Articles

Thermoelectric transport properties of graphyne with different structures based on first principles

Xuhao JIANG(), Yuanchao LIU(), Yifan XU, Duan LI, Xinhao LIU, Zishuo LI   

  1. School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
  • Received:2023-09-01 Revised:2023-11-13 Online:2024-02-19 Published:2023-12-25
  • Contact: Yuanchao LIU

基于第一性原理的不同结构石墨炔热电输运特性研究

蒋旭浩(), 刘远超(), 徐一帆, 李耑, 刘新昊, 李梓硕   

  1. 北京石油化工学院机械工程学院,北京 102617
  • 通讯作者: 刘远超
  • 作者简介:蒋旭浩(1999—),男,硕士研究生,2021540018@bipt.edu.cn
  • 基金资助:
    国家自然科学基金项目(51106012)

Abstract:

Graphyne is an emerging two-dimensional layered material with promising applications in the field of thermoelectricity. An objective of this paper is to profoundly investigate the thermoelectric transport properties of γ, δ, and α structured graphyne using first principles calculations. This paper mainly discussed the effect regularities of the three different structures on phonon thermal transport, electronic conductivity, and thermoelectric figure of merit. The results show that graphdiyne with γ, δ and α structures have low thermal conductivity at room temperature, which are 31.19947, 13.44974 and 5.87009 W·m-1·K-1, respectively, and the thermal conductivity gradually decreases as the temperature increases. In terms of electrical transport, the three different structures of graphyne demonstrate high power factors under appropriate carrier doping, which are 0.135, 0.045, and 0.011 W·m-1·K-2, respectively. Consequently, the maximum thermoelectric figure of merit (ZTmax) was obtained to be about 2.93, 2.22, and 1.67 for each respective structure. The graphyne materials with different atomic structures have their own advantages in the fields of heat and electricity. Under the rational distribution of sp-hybridized carbon atoms, these materials can form Dirac cones or tunable small band gaps, and obtain lower thermal conductivity. The maximum thermoelectric figure of merit can reach 2.93. The thermoelectric performance of graphyne materials with different structures will contribute to their application in the field of thermoelectric, and provide reference and inspiration for the application of two-dimensional layered carbon nanomaterials in the field of thermoelectric.

Key words: nanomaterials, graphyne, heat conduction, conductivity, thermoelectric figure of merit, first principles, numerical simulation

摘要:

石墨炔是一种新兴的二维层状材料,在热电领域具有应用前景。基于第一性原理的计算方法,分别对γ-石墨炔、δ-石墨炔和α-石墨炔的热电输运特性进行深入研究,重点探讨三种不同结构对声子热输运、电子电导和热电优值的影响规律。研究结果表明,γ、δ和α结构的石墨炔在室温下具有较低的热导率,分别为31.19947、13.44974、5.87009 W·m-1·K-1,且随温度升高热导率逐渐降低;在电输运方面,三种不同结构的石墨炔在适当载流子掺杂下表现出较高的功率因数,分别为0.135、0.045、0.011 W·m-1·K-2;最终获得最大热电优值ZTmax分别约为2.93、2.22、1.67。不同原子结构的石墨炔材料在热、电领域各具优势,在sp杂化碳原子的合理分配下可形成Dirac锥,或可调小带隙,并获得较低的热导率,热电优值最大可达2.93。不同结构的石墨炔材料的热电性能研究,将有助于其在热电领域的应用,并为二维层状碳纳米材料在热电领域的应用提供借鉴和参考。

关键词: 纳米材料, 石墨炔, 热传导, 电导率, 热电优值, 第一性原理, 数值模拟

CLC Number: