CIESC Journal ›› 2023, Vol. 74 ›› Issue (12): 5038-5047.DOI: 10.11949/0438-1157.20230943
• Process safety • Previous Articles Next Articles
Yifan HE(), Shuai YU, Xingqing YAN, Jianliang YU()
Received:
2023-09-11
Revised:
2023-10-29
Online:
2024-02-19
Published:
2023-12-25
Contact:
Jianliang YU
通讯作者:
喻健良
作者简介:
赫一凡(2001—),男,硕士研究生,hyf010201@163.com
基金资助:
CLC Number:
Yifan HE, Shuai YU, Xingqing YAN, Jianliang YU. Construction of CO2 decompression wave propagation model based on method of characteristics and research on crack arrest wall thickness[J]. CIESC Journal, 2023, 74(12): 5038-5047.
赫一凡, 于帅, 闫兴清, 喻健良. 基于特征线法的CO2减压波传播模型构建及止裂壁厚研究[J]. 化工学报, 2023, 74(12): 5038-5047.
Add to citation manager EndNote|Ris|BibTeX
序号 | CO2纯度/ %(体积分数) | 泄放 口径/mm | 初始 压力/MPa | 初始 温度/℃ | 装入量/t |
---|---|---|---|---|---|
Test 1 | 99.99 | 15 | 7.6 | 35.1 | 3.14 |
Test 2 | 99.99 | 50 | 7.9 | 33.4 | 6.27 |
Table 1 Experimental conditions
序号 | CO2纯度/ %(体积分数) | 泄放 口径/mm | 初始 压力/MPa | 初始 温度/℃ | 装入量/t |
---|---|---|---|---|---|
Test 1 | 99.99 | 15 | 7.6 | 35.1 | 3.14 |
Test 2 | 99.99 | 50 | 7.9 | 33.4 | 6.27 |
测点 | 距泄漏口距离/m |
---|---|
P1 | 10.4 |
P2 | 13.5 |
P3 | 22.3 |
P4 | 54.2 |
P5 | 62.1 |
P6 | 108.8 |
P7 | 116.8 |
P8 | 162.0 |
Table 2 Distribution of high-frequency pressure sensors
测点 | 距泄漏口距离/m |
---|---|
P1 | 10.4 |
P2 | 13.5 |
P3 | 22.3 |
P4 | 54.2 |
P5 | 62.1 |
P6 | 108.8 |
P7 | 116.8 |
P8 | 162.0 |
位置 | 距离/m | 实验平均减压 波速/(m/s) | 模拟平均减压 波速/(m/s) | 相对 误差/% |
---|---|---|---|---|
P1-P2 | 3.1 | 193.75 | 193.75 | 0 |
P1-P4 | 43.7 | 199.54 | 202.31 | 1.4 |
P1-P6 | 98.4 | 199.19 | 202.05 | 1.4 |
P1-P7 | 106.4 | 198.88 | 201.89 | 1.5 |
Table 3 Decompression wave speed and relative error of Test 1
位置 | 距离/m | 实验平均减压 波速/(m/s) | 模拟平均减压 波速/(m/s) | 相对 误差/% |
---|---|---|---|---|
P1-P2 | 3.1 | 193.75 | 193.75 | 0 |
P1-P4 | 43.7 | 199.54 | 202.31 | 1.4 |
P1-P6 | 98.4 | 199.19 | 202.05 | 1.4 |
P1-P7 | 106.4 | 198.88 | 201.89 | 1.5 |
位置 | 距离/m | 实验平均减压 波速/(m/s) | 模拟平均减压 波速/(m/s) | 相对 误差/% |
---|---|---|---|---|
P1-P2 | 3.1 | 182.35 | 193.75 | 6.3 |
P1-P4 | 43.7 | 189.18 | 207.11 | 9.5 |
P1-P6 | 98.4 | 188.51 | 206.72 | 9.7 |
P1-P7 | 106.4 | 187.99 | 205.8 | 9.5 |
Table 4 Decompression wave speed and relative error of Test 2
位置 | 距离/m | 实验平均减压 波速/(m/s) | 模拟平均减压 波速/(m/s) | 相对 误差/% |
---|---|---|---|---|
P1-P2 | 3.1 | 182.35 | 193.75 | 6.3 |
P1-P4 | 43.7 | 189.18 | 207.11 | 9.5 |
P1-P6 | 98.4 | 188.51 | 206.72 | 9.7 |
P1-P7 | 106.4 | 187.99 | 205.8 | 9.5 |
牌号 | 屈服强度σYS/MPa | 抗拉强度σTS/MPa | ||
---|---|---|---|---|
最小值 | 最大值 | 最小值 | 最大值 | |
X65 | 450 | 570 | 535 | 760 |
X70 | 485 | 605 | 570 | 760 |
Table 5 Basic mechanical parameters of X65 and X70
牌号 | 屈服强度σYS/MPa | 抗拉强度σTS/MPa | ||
---|---|---|---|---|
最小值 | 最大值 | 最小值 | 最大值 | |
X65 | 450 | 570 | 535 | 760 |
X70 | 485 | 605 | 570 | 760 |
初始压力(工作压力)/MPa | 最小壁厚/mm | |
---|---|---|
X65 | X70 | |
7.5 | 3.9 | 3.7 |
8.0 | 3.7 | 3.5 |
8.5 | 3.6 | 3.4 |
9.0 | 3.6 | 3.4 |
9.5 | 3.4 | 3.2 |
Table 6 Minimum crack stopping thickness for X65 and X70 under different working pressures(35℃)
初始压力(工作压力)/MPa | 最小壁厚/mm | |
---|---|---|
X65 | X70 | |
7.5 | 3.9 | 3.7 |
8.0 | 3.7 | 3.5 |
8.5 | 3.6 | 3.4 |
9.0 | 3.6 | 3.4 |
9.5 | 3.4 | 3.2 |
初始温度(工作温度)/℃ | 最小壁厚/mm | |
---|---|---|
X65 | X70 | |
35 | 3.6 | 3.4 |
37 | 3.9 | 3.6 |
39 | 4.1 | 3.8 |
41 | 4.2 | 3.9 |
43 | 4.3 | 4.1 |
45 | 4.5 | 4.2 |
Table 7 Minimum crack stopping thickness for X65 and X70 at different operating temperatures(9.0 MPa)
初始温度(工作温度)/℃ | 最小壁厚/mm | |
---|---|---|
X65 | X70 | |
35 | 3.6 | 3.4 |
37 | 3.9 | 3.6 |
39 | 4.1 | 3.8 |
41 | 4.2 | 3.9 |
43 | 4.3 | 4.1 |
45 | 4.5 | 4.2 |
初始压力(工作压力)/MPa | 计算厚度/mm | |
---|---|---|
X65 | X70 | |
7.5 | 3.5 | 3.2 |
8.0 | 3.7 | 3.4 |
8.5 | 3.9 | 3.6 |
9.0 | 4.2 | 3.8 |
9.5 | 4.4 | 4.0 |
Table 8 Calculated thickness for different working pressures of X65 and X70
初始压力(工作压力)/MPa | 计算厚度/mm | |
---|---|---|
X65 | X70 | |
7.5 | 3.5 | 3.2 |
8.0 | 3.7 | 3.4 |
8.5 | 3.9 | 3.6 |
9.0 | 4.2 | 3.8 |
9.5 | 4.4 | 4.0 |
1 | 李玉星, 刘兴豪, 王财林, 等. 含杂质气态CO2输送管道腐蚀研究进展[J]. 金属学报, 2021, 57(3): 283-294. |
Li Y X, Liu X H, Wang C L, et al. Research progress on corrosion behavior of gaseous CO2 transportation pipelines containing impurities[J]. Acta Metallurgica Sinica, 2021, 57(3): 283-294. | |
2 | 郭文瑾, 张一梅, 栗帅, 等. CCUS技术CO2泄漏模拟及生态风险评价[J]. 环境科学与技术, 2022, 45(5): 180-192. |
Guo W J, Zhang Y M, Li S, et al. Simulation and ecological risk assessment of CO2 leakage for CCUS technology[J]. Environmental Science & Technology, 2022, 45(5): 180-192. | |
3 | 宋玲莉, 郑艳杰, 菅向东. 某货轮二氧化碳泄露致急性职业中毒的临床特征分析[J]. 中华劳动卫生职业病杂志, 2023, 41(4): 301-303. |
Song L L, Zheng Y J, Jian X D. Clinical characteristics of acute occupational poisoning caused by carbon dioxide leakage from a cargo ship[J]. Chinese Journal of Industrial Hygiene and Occupational Diseases, 2023, 41(4): 301-303. | |
4 | 孙怀志, 高军丽, 李顺勇. 高压氧综合治疗二氧化碳中毒并发急性心肌损伤一例[J]. 中华劳动卫生职业病杂志, 2021, 39(5): 373-374. |
Sun H Z, Gao J L, Li S Y. A case of acute myocardial injury caused by carbon dioxide poisoning treated by hyperbaric oxygen[J]. Chinese Journal of Industrial Hygiene and Occupational Diseases, 2021, 39(5): 373-374. | |
5 | Barberi F, Carapezza M L, Tarchini L, et al. Anomalous discharge of endogenous gas at Lavinio (Rome, Italy) and the Lethal Accident of 5 September 2011[J]. GeoHealth, 2019, 3(12): 407-422. |
6 | 王振. 海岛船用CO2灭火系统泄漏事故[J]. 中国安全生产, 2018,13(8): 52-53. |
Wang Z. Leakage accident of CO2 fire extinguishing system on island ships[J] China Safety Production, 2018, 13(8): 52-53. | |
7 | 冯忠海, 黄日生, 吴木生, 等. 一起货轮船舱急性二氧化碳中毒事故调查分析[J]. 职业卫生与应急救援, 2019, 37(1): 84-85. |
Feng Z H, Huang R S, Wu M S, et al. Case report: an accident of acute carbon dioxide poisoning within a freighter cabin[J]. Occupational Health and Emergency Rescue, 2019, 37(1): 84-85. | |
8 | Botros K K, Studzinski W, Geerligs J, et al. Determination of decompression wave speed in rich gas mixtures[J]. The Canadian Journal of Chemical Engineering, 2004, 82(5): 880-891. |
9 | Botros K K, Geerligs J, Carlson L, et al. Experimental validation of GASDECOM for high heating value processed gas mixtures (58 MJ/m3) by specialized shock tube[J]. International Journal of Pressure Vessels and Piping, 2013, 107: 20-26. |
10 | Vijayan V, Bae H, Marti T, et al. Decompression wave speed and crack velocity measurements during S4 test in water pressurized plastic pipes(1): Experimental methods[J]. Polymer Testing, 2016, 53: 338-346. |
11 | Xie Q Y, Tu R, Jiang X, et al. The leakage behavior of supercritical CO2 flow in an experimental pipeline system[J]. Applied Energy, 2014, 130: 574-580. |
12 | Vree B, Ahmad M, Buit L, et al. Rapid depressurization of a CO2 pipeline—an experimental study[J]. International Journal of Greenhouse Gas Control, 2015, 41: 41-49. |
13 | 顾帅威, 李玉星, 滕霖, 等. 小尺度超临界CO2管道小孔泄漏减压及温降特性[J]. 化工进展, 2019, 38(2): 805-812. |
Gu S W, Li Y X, Teng L, et al. Decompression and temperature drop characteristics of small-scale supercritical CO2 pipeline leakage with small holes[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 805-812. | |
14 | Ahmad M, Lowesmith B, De Koeijer G, et al. COSHER joint industry project: large scale pipeline rupture tests to study CO2 release and dispersion[J]. International Journal of Greenhouse Gas Control, 2015, 37: 340-353. |
15 | Clausen S, Oosterkamp A, Strøm K L. Depressurization of a 50 km long 24 inches CO2 pipeline[J]. Energy Procedia, 2012, 23: 256-265. |
16 | 喻健良, 郭晓璐, 陈绍云. 工业规模CO2管道泄放装置设计和试验研究[C]//第二届CCPS中国过程安全会议. 大连, 2014. |
Yu J L, Guo X L, Chen S Y. Design and experimental research on industrial scale CO2 pipeline release devices[C]// 2nd CCPS China Process Safety Conference Proceedings. Dalian, 2014. | |
17 | 唐建峰, 段常贵, 吕文哲, 等. 特征线法在燃气管道动态模拟中的应用[J]. 油气储运, 2001, 20(8): 12-17, 58. |
Tang J F, Duan C G, Lyu W Z, et al. The application of the characteristics method to the dynamic simulation of gas pipeline[J]. Oil & Gas Storage and Transportation, 2001, 20(8): 12-17, 58. | |
18 | 宋涛. 天然气管网特征线法动态仿真分析[D]. 西安: 西安石油大学, 2015. |
Song T. Dynamic simulation analysis of natural gas pipeline network by characteristic method[D].: Shiyou University, 2015. | |
19 | 孙良, 王建林, 赵利强. 负压波法在液体管道上的可检测泄漏率分析[J]. 石油学报, 2010, 31(4): 654-658. |
Sun L, Wang J L, Zhao L Q. Analysis on detectable leakage ratio of liquid pipeline by negative pressure wave method[J]. Acta Petrolei Sinica, 2010, 31(4): 654-658. | |
20 | 陈福来, 帅健, 冯耀荣, 等. 高压天然气输送管道断裂过程中气体减压波速的计算[J]. 中国石油大学学报(自然科学版), 2009, 33(4): 130-135. |
Chen F L, Shuai J, Feng Y R, et al. Calculation of high-pressure natural gas decompression wave velocity during pipeline fracture[J]. Journal of China University of Petroleum (Edition of Natural Science), 2009, 33(4): 130-135. | |
21 | 李江飞, 徐康泰, 贺晓, 等. 基于Span Wagner状态方程的二氧化碳管道数值仿真[J]. 科技通报, 2017, 33(5): 10-15. |
Li J F, Xu K T, He X, et al. Numerical simulation of CO2 pipeline based on Span Wagner EOS[J]. Bulletin of Science and Technology, 2017, 33(5): 10-15. | |
22 | 赵青. 含杂质CO2不同相态管输节流及减压特性研究[D]. 东营: 中国石油大学(华东), 2015. |
Zhao Q. Study on throttling and depressurization characteristics of CO2 pipeline with different phases[D]. Dongying: China University of Petroleum, 2015. | |
23 | 李鹤, 李洋, 王鹏, 等. X80管线钢管动态裂纹扩展速度计算[J]. 压力容器, 2013, 30(2): 33-35, 21. |
Li H, Li Y, Wang P, et al. Calculation of dynamic crack propagation velocities for X80 line pipe[J]. Pressure Vessel Technology, 2013, 30(2): 33-35, 21. | |
24 | Martynov S B, Talemi R H, Brown S, et al. Assessment of fracture propagation in pipelines transporting impure CO2 streams[J]. Energy Procedia, 2017, 114: 6685-6697. |
25 | Guo X L, Yan X Q, Yu J L, et al. Pressure responses and phase transitions during the release of high pressure CO2 from a large-scale pipeline[J]. Energy, 2017, 118: 1066-1078. |
26 | 谭羽非. 高等工程热力学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2018. |
Tan Y F. Advanced Engineering Thermodynamics[M]. Harbin: Harbin Institute of Technology Press, 2018. | |
27 | Span R, Wagner W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596. |
28 | Martynov S, Zheng W T, Mahgerefteh H, et al. Computational and experimental study of solid-phase formation during the decompression of high-pressure CO2 pipelines[J]. Industrial & Engineering Chemistry Research, 2018, 57(20): 7054-7063. |
29 | Guo X L, Yan X Q, Yu J L, et al. Pressure response and phase transition in supercritical CO2 releases from a large-scale pipeline[J]. Applied Energy, 2016, 178: 189-197. |
30 | Munkejord S T, Austegard A, Deng H, et al. Depressurization of CO2 in a pipe: high-resolution pressure and temperature data and comparison with model predictions[J]. Energy, 2020, 211: 118560. |
31 | Munkejord S T, Deng H, Austegard A, et al. Depressurization of CO2-N2 and CO2-He in a pipe: experiments and modelling of pressure and temperature dynamics[J]. International Journal of Greenhouse Gas Control, 2021, 109: 103361. |
32 | Patricia S, Kamal K B, Brian R, 等. 含杂质二氧化碳管道输送[M]. 赵帅, 译. 北京: 中国石化出版社, 2014. |
Patricia S, Kamal K B, Brian R, et al. Pipeline Transportation of Carbon Dioxide Containing Impurities[M]. Zhao S, trans. Beijing: China Petrochemical Press, 2014. | |
33 | 王保国, 高歌, 黄伟光. 非定常气体动力学[M]. 北京: 北京理工大学出版社, 2014. |
Wang B G, Gao G, Huang W G. Unsteady Aerodynamics[M]. Beijing: Beijing Institute of Technology Press, 2014. | |
34 | 王佐强, 刘极莉, 刘楚, 等. 海底输气管道延性断裂扩展机理及断裂控制[J]. 石化技术, 2015, 22(5): 157-159. |
Wang Z Q, Liu J L, Liu C, et al. Ductile fracture propagation theory and fracture control in submarine gas pipeline[J]. Petrochemical Industry Technology, 2015, 22(5): 157-159. | |
35 | Guo X L, Xu S Q, Chen G J, et al. Fracture criterion and control plan on CO2 pipelines: theory analysis and full-bore rupture (FBR) experimental study[J]. Journal of Loss Prevention in the Process Industries, 2021, 69: 104394. |
36 | Jo M C, Lee S G, Sohn S S, et al. Effects of coiling temperature and pipe-forming strain on yield strength variation after ERW pipe forming of API X70 and X80 linepipe steels[J]. Materials Science and Engineering: A, 2017, 682: 304-311. |
37 | Witek M. Possibilities of using X80, X100, X120 high-strength steels for onshore gas transmission pipelines[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 374-384. |
38 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 压力容器: [S]. 北京: 中国标准出版社, 2011. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Pressure vessels: [S]. Beijing: Standards Press of China, 2011. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||