CIESC Journal ›› 2023, Vol. 74 ›› Issue (5): 2100-2110.DOI: 10.11949/0438-1157.20230144
• Biochemical engineering and technology • Previous Articles Next Articles
Wenqi HOU(), Yan SUN, Xiaoyan DONG()
Received:
2023-02-21
Revised:
2023-04-14
Online:
2023-06-29
Published:
2023-05-05
Contact:
Xiaoyan DONG
通讯作者:
董晓燕
作者简介:
侯文起(1997—),男,硕士研究生,hwq@tju.edu.cn
基金资助:
CLC Number:
Wenqi HOU, Yan SUN, Xiaoyan DONG. Basification modification of transthyretin significantly enhances inhibitory effect on amyloid-β protein aggregation[J]. CIESC Journal, 2023, 74(5): 2100-2110.
侯文起, 孙彦, 董晓燕. 碱化修饰甲状腺素运载蛋白显著增强对淀粉样β蛋白聚集的抑制作用[J]. 化工学报, 2023, 74(5): 2100-2110.
Add to citation manager EndNote|Ris|BibTeX
样品 | 羧基数目 | 氨基数目 | 修饰度/% | Zeta电势(pH 7.4)/mV |
---|---|---|---|---|
TTR | 18 | 9 | 0 | 0.017 |
TTR-B1 | 16 | 11 | 11.1±0.6 | 1.64±0.02 |
TTR-B2 | 13 | 14 | 27.8±1.7 | 3.51±0.05 |
TTR-B3 | 11 | 16 | 38.9±1.1 | 4.60±0.12 |
Table 1 Physicochemical properties of TTR and TTR-B
样品 | 羧基数目 | 氨基数目 | 修饰度/% | Zeta电势(pH 7.4)/mV |
---|---|---|---|---|
TTR | 18 | 9 | 0 | 0.017 |
TTR-B1 | 16 | 11 | 11.1±0.6 | 1.64±0.02 |
TTR-B2 | 13 | 14 | 27.8±1.7 | 3.51±0.05 |
TTR-B3 | 11 | 16 | 38.9±1.1 | 4.60±0.12 |
样品 | Tlag/h |
---|---|
单独Aβ40 | 35.9±0.7 |
Aβ40+1 μmol·L-1 TTR | 43.1±0.3 |
Aβ40+5 μmol·L-1 TTR | 59.5±0.3 |
Aβ40+10 μmol·L-1 TTR | 65.2±0.4 |
Aβ40+1 μmol·L-1 TTR-B3 | 82.1±0.2 |
Aβ40+5 μmol·L-1 TTR-B3 | 112.4±0.2 |
Aβ40+10 μmol·L-1 TTR-B3 | - |
Table 2 Lag phase time (Tlag) of Aβ40 aggregation kinetics in different conditions
样品 | Tlag/h |
---|---|
单独Aβ40 | 35.9±0.7 |
Aβ40+1 μmol·L-1 TTR | 43.1±0.3 |
Aβ40+5 μmol·L-1 TTR | 59.5±0.3 |
Aβ40+10 μmol·L-1 TTR | 65.2±0.4 |
Aβ40+1 μmol·L-1 TTR-B3 | 82.1±0.2 |
Aβ40+5 μmol·L-1 TTR-B3 | 112.4±0.2 |
Aβ40+10 μmol·L-1 TTR-B3 | - |
1 | Zhao Y, Cai J Q, Liu Z C, et al. Nanocomposites inhibit the formation, mitigate the neurotoxicity, and facilitate the removal of β-amyloid aggregates in Alzheimer's disease mice[J]. Nano Letters, 2019, 19(2): 674-683. |
2 | Dubey S K, Ram M S, Krishna K V, et al. Recent expansions on cellular models to uncover the scientific barriers towards drug development for Alzheimer's disease[J]. Cellular and Molecular Neurobiology, 2019, 39(2): 181-209. |
3 | 刘伟, 孙彦. β-淀粉样蛋白的聚集及其调控[J]. 化工学报, 2022, 73(6): 2381-2396. |
Liu W, Sun Y. Research progress on amyloid β-protein aggregation and its regulation[J]. CIESC Journal, 2022, 73(6): 2381-2396. | |
4 | Brookmeyer R, Evans D A, Hebert L, et al. National estimates of the prevalence of Alzheimer's disease in the United States[J]. Alzheimer's & Dementia, 2011, 7(1): 61-73. |
5 | Chen X Q, Gao W Q, Sun Y, et al. Multiple effects of polydopamine nanoparticles on Cu2+-mediated Alzheimer's β-amyloid aggregation[J]. Chinese Journal of Chemical Engineering, 2023, 54: 144-152. |
6 | Saleem S. Apoptosis, autophagy, necrosis and their multi galore crosstalk in neurodegeneration[J]. Neuroscience, 2021, 469: 162-174. |
7 | Love S, Miners J S. Cerebrovascular disease in ageing and Alzheimer's disease[J]. Acta Neuropathologica, 2016, 131(5): 645-658. |
8 | Liu W, Sun X T, Dong X Y, et al. Chiral LVFFARK enantioselectively inhibits amyloid-β protein fibrillogenesis[J]. Chinese Journal of Chemical Engineering, 2022, 48: 227-235. |
9 | Zheng W H, Tsai M Y, Wolynes P G. Comparing the aggregation free energy landscapes of amyloid beta(1-42) and amyloid beta(1-40)[J]. Journal of the American Chemical Society, 2017, 139(46): 16666-16676. |
10 | Panza F, Lozupone M, Logroscino G, et al. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease[J]. Nature Reviews. Neurology, 2019, 15(2): 73-88. |
11 | Cline E N, Bicca M A, Viola K L, et al. The amyloid-β oligomer hypothesis: beginning of the third decade[J]. Journal of Alzheimer's Disease: JAD, 2018, 64(s1): S567-S610. |
12 | Han X, He G F. Toward a rational design to regulate β-amyloid fibrillation for Alzheimer's disease treatment[J]. ACS Chemical Neuroscience, 2018, 9(2): 198-210. |
13 | Wang W J, Dong X Y, Sun Y. Modification of serum albumin by high conversion of carboxyl to amino groups creates a potent inhibitor of amyloid β-protein fibrillogenesis[J]. Bioconjugate Chemistry, 2019, 30(5): 1477-1488. |
14 | Małgorzata R, Marcin K, Agnieszka J, et al. The binding constant for amyloid Aβ40 peptide interaction with human serum albumin[J]. Biochemical and Biophysical Research Communications, 2007, 364(3): 714-718. |
15 | Luo J H, Wärmländer S K T S, Gräslund A, et al. Human lysozyme inhibits the in vitro aggregation of Aβ peptides, which in vivo are associated with Alzheimer's disease[J]. Chemical Communications, 2013, 49(58): 6507-6509. |
16 | Wang W J, Liu W, Xu S Y, et al. Design of multifunctional agent based on basified serum albumin for efficient in vivo β-amyloid inhibition and imaging[J]. ACS Applied Bio Materials, 2020, 3(5): 3365-3377. |
17 | Li X, Xie B L, Sun Y. Basified human lysozyme: a potent inhibitor against amyloid β-protein fibrillogenesis[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2018, 34(50): 15569-15577. |
18 | Stein T D, Anders N J, DeCarli C, et al. Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPSW mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2004, 24(35): 7707-7717. |
19 | Du J L, Murphy R M. Characterization of the interaction of β-amyloid with transthyretin monomers and tetramers[J]. Biochemistry, 2010, 49(38): 8276-8289. |
20 | Mangrolia P, Yang D T, Murphy R M. Transthyretin variants with improved inhibition of β-amyloid aggregation[J]. Protein Engineering, Design and Selection, 2016, 29(6): 209-218. |
21 | Cotrina E Y, Vilà M, Nieto J, et al. Preparative scale production of recombinant human transthyretin for biophysical studies of protein-ligand and protein-protein interactions[J]. International Journal of Molecular Sciences, 2020, 21(24): 9640. |
22 | Böhlen P, Stein S, Dairman W, et al. Fluorometric assay of proteins in the nanogram range[J]. Archives of Biochemistry and Biophysics, 1973, 155(1): 213-220. |
23 | Hawe A, Sutter M, Jiskoot W. Extrinsic fluorescent dyes as tools for protein characterization[J]. Pharmaceutical Research, 2008, 25(7): 1487-1499. |
24 | Yang J N, Liu W, Sun Y, et al. LVFFARK-PEG-stabilized black phosphorus nanosheets potently inhibit amyloid-β fibrillogenesis[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2020, 36(7): 1804-1812. |
25 | Li Y H, Xu D, Ho S L, et al. A theranostic agent for in vivo near-infrared imaging of β-amyloid species and inhibition of β-amyloid aggregation[J]. Biomaterials, 2016, 94: 84-92. |
26 | Cho P Y, Joshi G, Johnson J A, et al. Transthyretin-derived peptides as β-amyloid inhibitors[J]. ACS Chemical Neuroscience, 2014, 5(7): 542-551. |
27 | Cheng S Y, Pages R A, Saroff H A, et al. Analysis of thyroid hormone binding to human serum prealbumin by 8-anilinonaphthalene- 1-sulfonate fluorescence[J]. Biochemistry, 1977, 16(16): 3707-3713. |
28 | Ghadami S A, Chia S A, Ruggeri F S, et al. Transthyretin inhibits primary and secondary nucleations of amyloid‑β peptide aggregation and reduces the toxicity of its oligomers[J]. Biomacromolecules, 2020, 21(3): 1112-1125. |
29 | Xiong N, Dong X Y, Zheng J, et al. Design of LVFFARK and LVFFARK-functionalized nanoparticles for inhibiting amyloid β-protein fibrillation and cytotoxicity[J]. ACS Applied Materials & Interfaces, 2015, 7(10): 5650-5662. |
30 | Österlund N, Kulkarni Y S, Misiaszek A D, et al. Amyloid-β peptide interactions with amphiphilic surfactants: electrostatic and hydrophobic effects[J]. ACS Chemical Neuroscience, 2018, 9(7): 1680-1692. |
31 | Lublin A L, Link C D. Alzheimer's disease drug discovery: in vivo screening using Caenorhabditis elegans as a model for β-amyloid peptide-induced toxicity[J]. Drug Discovery Today: Technologies, 2013, 10(1): e115-e119. |
[1] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[2] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[3] | Xinyue WANG, Junjie WANG, Sixian CAO, Cui WANG, Lingkun LI, Hongyu WU, Jing HAN, Hao WU. Effect of glass primary container surface modification on monoclonal antibody aggregates induced by mechanical stress [J]. CIESC Journal, 2023, 74(6): 2580-2588. |
[4] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[5] | Yuming CHEN, Wei LI, Xiang YAN, Jingdai WANG, Yongrong YANG. Research progress on regulation of aggregation structure for nascent polyethylene [J]. CIESC Journal, 2023, 74(2): 487-499. |
[6] | Qiuhua ZHANG, Manlu LIU, Zheng WANG, Yiming ZHANG, Haijia SU. Biosynthesis of vitamin K2 and functional analysis of the biosynthetic enzymes involved in its menadione moiety [J]. CIESC Journal, 2023, 74(1): 342-354. |
[7] | Wei LIU, Yan SUN. Research progress on amyloid β-protein aggregation and its regulation [J]. CIESC Journal, 2022, 73(6): 2381-2396. |
[8] | Min WANG, Jinlan CHENG, Xin LI, Jingjing LU, Chongxin YIN, Hongqi DAI. Delignification mechanism study of acid hydrotropes [J]. CIESC Journal, 2022, 73(5): 2206-2221. |
[9] | Shan CHENG, Rui LUO, Hong TIAN, Zhenqi WANG, Jingchun HUANG, Yu QIAO. Effect of hydrothermal carbonization temperature on transformation path of organic nitrogen in sludge [J]. CIESC Journal, 2022, 73(11): 5220-5229. |
[10] | HAN Wei, ZHAN Jun, SHI Hong, ZHAO Dong, CAI Shaojun, PENG Xianghong, XIAO Biao, GAO Yu. Synthesis and properties of nitrogen and sulfur codoped graphene quantum dots [J]. CIESC Journal, 2021, 72(S1): 530-538. |
[11] | Xiaoxi YU, Zhenzhen YAN, Qihui JIANG, Xia WU, Yuxiao ZHANG, Xiaojuan WANG, Fang HUANG. Study on the effect of 1-octyl-3-methylimidazole bromide aggregation state on protein crystallization [J]. CIESC Journal, 2021, 72(9): 4854-4860. |
[12] | Nanxing LI, Lin ZHANG. Design of asthma inhibitors targeting Galectin-10 protein [J]. CIESC Journal, 2021, 72(9): 4847-4853. |
[13] | CHEN Tingting, HAN Kaixin, CHEN Cuixue, LING Xueping, SHEN Liang, LU Yinghua. Study of iron-reducing bacteria Shewanellaxiamenensis BC01 under organic solvents stress [J]. CIESC Journal, 2021, 72(7): 3747-3756. |
[14] | DUAN Lingxuan, YAO Guangxiao, JIANG Liang, WANG Shizhen. Genome mining of organic solvent tolerant amino acid dehydrogenase for biosynthesis of unnatural amino acids in non-aqueous system [J]. CIESC Journal, 2021, 72(7): 3757-3767. |
[15] | GAO Zixi, GUO Shuqi, FEI Qiang. Recent progress in microbial bioconversion of greenhouse gases into single cell protein [J]. CIESC Journal, 2021, 72(6): 3202-3214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||