CIESC Journal ›› 2023, Vol. 74 ›› Issue (7): 3116-3126.DOI: 10.11949/0438-1157.20230015
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Mengmeng ZHANG(), Dong YAN, Yongfeng SHEN, Wencui LI()
Received:
2023-01-06
Revised:
2023-06-29
Online:
2023-08-31
Published:
2023-07-05
Contact:
Wencui LI
通讯作者:
李文翠
作者简介:
张蒙蒙(1997—),女,硕士研究生,mengzhang08@163.com
基金资助:
CLC Number:
Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries[J]. CIESC Journal, 2023, 74(7): 3116-3126.
张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126.
Table 1 Graphite microcrystalline parameters and specific surface area of NG and SC samples
Table 2 The fitting results of Nyquist plots for NG cathode in different electrolytes
1 | Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29. |
2 | Liang G M, Wu Z B, Didier C, et al. A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping[J]. Angewandte Chemie International Edition, 2020, 59(26): 10594-10602. |
3 | Wang G, Yu M H, Feng X L. Carbon materials for ion-intercalation involved rechargeable battery technologies[J]. Chemical Society Reviews, 2021, 50(4): 2388-2443. |
4 | Manthiram A. An outlook on lithium ion battery technology[J]. ACS Central Science, 2017, 3(10): 1063-1069. |
5 | Tang Y X, Zhang Y Y, Li W L, et al. Rational material design for ultrafast rechargeable lithium-ion batteries[J]. Chemical Society Reviews, 2015, 44(17): 5926-5940. |
6 | Hwang J Y, Myung S T, Sun Y K. Sodium-ion batteries: present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
7 | Xia J L, Lu A H, Yu X F, et al. Rational design of a trifunctional binder for hard carbon anodes showing high initial coulombic efficiency and superior rate capability for sodium-ion batteries[J]. Advanced Functional Materials, 2021, 31(40): 2104137. |
8 | Wu X S, Dong X L, Wang B Y, et al. Revealing the sodium storage behavior of biomass-derived hard carbon by using pure lignin and cellulose as model precursors[J]. Renewable Energy, 2022, 189: 630-638. |
9 | Jian Z L, Luo W, Ji X L. Carbon electrodes for K-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(36): 11566-11569. |
10 | Zhang W C, Pang W K, Sencadas V, et al. Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries[J]. Joule, 2018, 2(8): 1534-1547. |
11 | Seh Z W, Sun Y M, Zhang Q F, et al. Designing high-energy lithium-sulfur batteries[J]. Chemical Society Reviews, 2016, 45(20): 5605-5634. |
12 | Yang H J, Qiao Y, Chang Z, et al. Designing cation-solvent fully coordinated electrolyte for high-energy-density lithium-sulfur full cell based on solid-solid conversion[J]. Angewandte Chemie International Edition, 2021, 60(32): 17726-17734. |
13 | Read J A, Cresce A V, Ervin M H, et al. Dual-graphite chemistry enabled by a high voltage electrolyte[J]. Energy & Environmental Science, 2014, 7(2): 617-620. |
14 | Ji B F, Zhang F, Wu N Z, et al. A dual-carbon battery based on potassium-ion electrolyte[J]. Advanced Energy Materials, 2017, 7(20): 1700920. |
15 | Zhou X L, Liu Q R, Jiang C L, et al. Strategies towards low-cost dual-ion batteries with high performance[J]. Angewandte Chemie International Edition, 2020, 59(10): 3802-3832. |
16 | Kravchyk K V, Kovalenko M V. Rechargeable dual-ion batteries with graphite as a cathode: key challenges and opportunities[J]. Advanced Energy Materials, 2019, 9(35): 1901749. |
17 | Hu Z, Liu Q N, Zhang K, et al. All carbon dual ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 35978-35983. |
18 | Yang H, Shi X Y, Deng T, et al. Carbon-based dual-ion battery with enhanced capacity and cycling stability[J]. ChemElectroChem, 2018, 5(23): 3612-3618. |
19 | Märkle W, Tran N, Goers D, et al. The influence of electrolyte and graphite type on the P F 6 - intercalation behaviour at high potentials[J]. Carbon, 2009, 47(11): 2727-2732. |
20 | Li W H, Ning Q L, Xi X T, et al. Highly improved cycling stability of anion de-/ intercalation in the graphite cathode for dual-ion batteries[J]. Advanced Materials, 2019, 31(4): 1804766. |
21 | Sui Y M, Liu C F, Masse R C, et al. Dual-ion batteries: the emerging alternative rechargeable batteries[J]. Energy Storage Materials, 2020, 25: 1-32. |
22 | Kravchyk K V, Bhauriyal P, Piveteau L, et al. High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide[J]. Nature Communications, 2018, 9: 4469. |
23 | Li X A, Ou X W, Tang Y B. 6.0 V high-voltage and concentrated electrolyte toward high energy density K-based dual-graphite battery[J]. Advanced Energy Materials, 2020, 10(41): 2002567. |
24 | Zhang L, Wang H Y. Intercalation of multiply solvated hexafluorophospate anion into graphite electrode from mixtures of methyl acetate, ethyl methyl and ethylene carbonates[J]. Journal of Energy Chemistry, 2021, 58: 233-236. |
25 | Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information[J]. Carbon, 2005, 43(8): 1731-1742. |
26 | Ferrari A C. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Communications, 2007, 143(1/2): 47-57. |
27 | He B, Li W C, Yang C, et al. Incorporating sulfur inside the pores of carbons for advanced lithium-sulfur batteries: an electrolysis approach[J]. ACS Nano, 2016, 10(1): 1633-1639. |
28 | 朱丹丹. 溶剂化六氟磷酸根阴离子在石墨电极中的存储行为[D]. 合肥: 中国科学技术大学, 2021. |
Zhu D D. Storage behavior of solvated hexafluorophosphate anion in graphite electrode[D]. Hefei: University of Science and Technology of China, 2021. | |
29 | Heckmann A, Thienenkamp J, Beltrop K, et al. Towards high-performance dual-graphite batteries using highly concentrated organic electrolytes[J]. Electrochimica Acta, 2018, 260: 514-525. |
30 | Li W H, Liang H J, Hou X K, et al. Feasible engineering of cathode electrolyte interphase enables the profoundly improved electrochemical properties in dual-ion battery[J]. Journal of Energy Chemistry, 2020, 50: 416-423. |
31 | Yang S J, Yao N, Xu X Q, et al. Formation mechanism of the solid electrolyte interphase in different ester electrolytes[J]. Journal of Materials Chemistry A, 2021, 9(35): 19664-19668. |
32 | Zhang H M, Zhao S W, Huang F Q. A comparative overview of carbon anodes for nonaqueous alkali metal-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(48): 27140-27169. |
33 | Stevens D A, Dahn J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of the Electrochemical Society, 2001, 148(8): A803. |
34 | Li Z Y, Liu J A, Niu B B, et al. A novel graphite-graphite dual ion battery using an AlCl3-[EMIm]Cl liquid electrolyte[J]. Small, 2018, 14(28): 1800745. |
35 | Feng Y H, Chen S H, Wang J, et al. Carbon foam with microporous structure for high performance symmetric potassium dual-ion capacitor[J]. Journal of Energy Chemistry, 2020, 43: 129-138. |
36 | Shi X Y, Yu S S, Deng T, et al. Unlock the potential of Li4Ti5O12 for high-voltage/long-cycling-life and high-safety batteries: dual-ion architecture superior to lithium-ion storage[J]. Journal of Energy Chemistry, 2020, 44: 13-18. |
37 | Fan L, Liu Q, Xu Z, et al. An organic cathode for potassium dual-ion full battery[J]. ACS Energy Letters, 2017, 2(7): 1614-1620. |
38 | Chen Y, Qiu X M, Fan L Z. Nitrogen-rich hierarchically porous carbon foams as high-performance electrodes for lithium-based dual-ion capacitor[J]. Journal of Energy Chemistry, 2020, 48: 187-194. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[4] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[5] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[6] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[7] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[8] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[9] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[10] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[11] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[12] | Ruiqi LIU, Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA. The construction and application of biosensor based on gold nanoparticles loaded SiO2-nanoflowers [J]. CIESC Journal, 2023, 74(3): 1247-1259. |
[13] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
[14] | Weijiang CHENG, Heqi WANG, Xiang GAO, Na LI, Sainan MA. Research progress on film-forming electrolyte additives for Si-based lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 571-584. |
[15] | Yue SONG, Qicheng ZHANG, Wenchao PENG, Yang LI, Fengbao ZHANG, Xiaobin FAN. Synthesis of MoS2-based single atom catalyst and its application in electrocatalysis [J]. CIESC Journal, 2023, 74(2): 535-545. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 215
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 189
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||