CIESC Journal ›› 2024, Vol. 75 ›› Issue (1): 190-196.DOI: 10.11949/0438-1157.20230735
• Thermodynamics • Previous Articles Next Articles
Donglin ZHONG1,2(), Suyun JIE1, Miao DU3, Pengju PAN1,2, Guorong SHAN1,2()
Received:
2023-07-14
Revised:
2023-09-13
Online:
2024-03-11
Published:
2024-01-25
Contact:
Guorong SHAN
钟东霖1,2(), 介素云1, 杜淼3, 潘鹏举1,2, 单国荣1,2()
通讯作者:
单国荣
作者简介:
钟东霖(1998—),男,硕士研究生,22128143@zju.edu.cn
基金资助:
CLC Number:
Donglin ZHONG, Suyun JIE, Miao DU, Pengju PAN, Guorong SHAN. Study on molecular weight-refractive index model of polymethylphenylsiloxane[J]. CIESC Journal, 2024, 75(1): 190-196.
钟东霖, 介素云, 杜淼, 潘鹏举, 单国荣. 聚苯基甲基硅氧烷分子量-折射率模型研究[J]. 化工学报, 2024, 75(1): 190-196.
Add to citation manager EndNote|Ris|BibTeX
Group | Ri / (cm3·mol-1) | Ai / (cm3·mol-1) | 103Bi / (cm3·mol-1·K-1) | 105Ci / (cm3·mol-1·K-2) |
---|---|---|---|---|
C6H5 | 25.301 | 145.215 | -479.05 | 80.70 |
CH3 | 5.442 | 16.43 | 55.62 | 0 |
SiO | 7.740 | 41.93 | -142.30 | 13.76 |
Table 1 Molar refraction and molar volume parameters of phenyl, methyl and SiO group
Group | Ri / (cm3·mol-1) | Ai / (cm3·mol-1) | 103Bi / (cm3·mol-1·K-1) | 105Ci / (cm3·mol-1·K-2) |
---|---|---|---|---|
C6H5 | 25.301 | 145.215 | -479.05 | 80.70 |
CH3 | 5.442 | 16.43 | 55.62 | 0 |
SiO | 7.740 | 41.93 | -142.30 | 13.76 |
Molecular weight | Refractive index | |||
---|---|---|---|---|
30℃ | 40℃ | 50℃ | 60℃ | |
3058 | 1.5202 | 1.5168 | 1.5136 | 1.5098 |
5552 | 1.5336 | 1.5298 | 1.5269 | 1.5236 |
8264 | 1.5401 | 1.5361 | 1.5324 | 1.5286 |
10075 | 1.5415 | 1.5376 | 1.5340 | 1.5301 |
13794 | 1.5441 | 1.5409 | 1.5383 | 1.5347 |
18843 | 1.5460 | 1.5417 | 1.538 | 1.5345 |
20999 | 1.5464 | 1.5433 | 1.5408 | 1.5370 |
28253 | 1.5475 | 1.5437 | 1.5405 | 1.5366 |
46634 | 1.5495 | 1.5459 | 1.5418 | 1.5387 |
Table 2 Molecular weight and refractive index of polymethylphenylsiloxanes
Molecular weight | Refractive index | |||
---|---|---|---|---|
30℃ | 40℃ | 50℃ | 60℃ | |
3058 | 1.5202 | 1.5168 | 1.5136 | 1.5098 |
5552 | 1.5336 | 1.5298 | 1.5269 | 1.5236 |
8264 | 1.5401 | 1.5361 | 1.5324 | 1.5286 |
10075 | 1.5415 | 1.5376 | 1.5340 | 1.5301 |
13794 | 1.5441 | 1.5409 | 1.5383 | 1.5347 |
18843 | 1.5460 | 1.5417 | 1.538 | 1.5345 |
20999 | 1.5464 | 1.5433 | 1.5408 | 1.5370 |
28253 | 1.5475 | 1.5437 | 1.5405 | 1.5366 |
46634 | 1.5495 | 1.5459 | 1.5418 | 1.5387 |
Temperature/℃ | f |
---|---|
30 | 0.019 |
40 | 0.022 |
50 | 0.024 |
60 | 0.026 |
Table 3 Value of f under different temperatures
Temperature/℃ | f |
---|---|
30 | 0.019 |
40 | 0.022 |
50 | 0.024 |
60 | 0.026 |
Molecular weight | Refractive index | |||||||
---|---|---|---|---|---|---|---|---|
30℃ | 40℃ | 50℃ | 60℃ | |||||
Exp. | Pred. | Exp. | Pred. | Exp. | Pred. | Exp. | Pred. | |
6575 | 1.5377 | 1.5376 | 1.5346 | 1.5349 | 1.5311 | 1.5313 | 1.5283 | 1.5268 |
10163 | 1.5409 | 1.5410 | 1.5371 | 1.5384 | 1.5335 | 1.5349 | 1.5299 | 1.5303 |
12097 | 1.5428 | 1.5420 | 1.5394 | 1.5395 | 1.5359 | 1.5359 | 1.5321 | 1.5314 |
14907 | 1.5439 | 1.5430 | 1.5402 | 1.5405 | 1.5360 | 1.5369 | 1.5328 | 1.5324 |
26201 | 1.5470 | 1.5449 | 1.5431 | 1.5424 | 1.5392 | 1.5389 | 1.5359 | 1.5344 |
Table 4 Comparisons between predicted and experimental values of refractive index
Molecular weight | Refractive index | |||||||
---|---|---|---|---|---|---|---|---|
30℃ | 40℃ | 50℃ | 60℃ | |||||
Exp. | Pred. | Exp. | Pred. | Exp. | Pred. | Exp. | Pred. | |
6575 | 1.5377 | 1.5376 | 1.5346 | 1.5349 | 1.5311 | 1.5313 | 1.5283 | 1.5268 |
10163 | 1.5409 | 1.5410 | 1.5371 | 1.5384 | 1.5335 | 1.5349 | 1.5299 | 1.5303 |
12097 | 1.5428 | 1.5420 | 1.5394 | 1.5395 | 1.5359 | 1.5359 | 1.5321 | 1.5314 |
14907 | 1.5439 | 1.5430 | 1.5402 | 1.5405 | 1.5360 | 1.5369 | 1.5328 | 1.5324 |
26201 | 1.5470 | 1.5449 | 1.5431 | 1.5424 | 1.5392 | 1.5389 | 1.5359 | 1.5344 |
1 | Shi J F, Zhao N, Xia S, et al. Phosphazene superbase catalyzed ring-opening polymerization of cyclotetrasiloxane toward copolysiloxanes with high diphenyl siloxane content[J]. Polymer Chemistry, 2019, 10(17): 2126-2133. |
2 | Wolf M P, Salieb-Beugelaar G B, Hunziker P. PDMS with designer functionalities—properties, modifications strategies and applications[J]. Progress in Polymer Science, 2018, 83: 97-134. |
3 | Maiti A, Small W, Kroonblawd M P, et al. Constitutive model of radiation aging effects in filled silicone elastomers under strain[J]. The Journal of Physical Chemistry B, 2021, 125(35): 10047-10057. |
4 | Razavi M, Primavera R, Vykunta A, et al. Silicone-based bioscaffolds for cellular therapies[J]. Materials Science and Engineering: C, 2021, 119: 111615. |
5 | Zhang X S, Chen Y J, Hu J L. Recent advances in the development of aerospace materials[J]. Progress in Aerospace Sciences, 2018, 97: 22-34. |
6 | Zalewski K, Chyłek Z, Trzciński W A. A review of polysiloxanes in terms of their application in explosives[J]. Polymers, 2021, 13(7): 1080. |
7 | Tian H Y, Tang Z H, Zhuang X L, et al. Biodegradable synthetic polymers: preparation, functionalization and biomedical application[J]. Progress in Polymer Science, 2012, 37(2): 237-280. |
8 | Pan Z Q, Cheng Y, Zhang Z. Synthesis of high refractive index silicone LED encapsulation with ultra-high hardness[J]. Silicon, 2022, 14(13): 7863-7870. |
9 | Muthamil S T, Mondal T. Radiation curable polysiloxane: synthesis to applications[J]. Soft Matter, 2021, 17(26): 6284-6297. |
10 | Meier D, Huch V, Kickelbick G. Aryl-group substituted polysiloxanes with high-optical transmission, thermal stability, and refractive index[J]. Journal of Polymer Science, 2021, 59(20): 2265-2283. |
11 | Lay M, Ramli M R, Ramli R, et al. Crosslink network and phenyl content on the optical, hardness,and thermal aging of PDMS LED encapsulant[J]. Journal of Applied Polymer Science, 2019, 136(34): 47895. |
12 | Tan C Z. Dependence of the refractive index on density, temperature and the wavelength of the incident light[J]. The European Physical Journal B, 2021, 94(7): 139. |
13 | Tao Z. Effect of magnetic field of light on refractive index[J]. Chinese Physics, 2004, 13(8): 1358-1364. |
14 | Gharagheizi F, Ilani-Kashkouli P, Kamari A, et al. A chemical structure based model for the estimation of refractive indices of organic compounds[J]. Fluid Phase Equilibria, 2014, 384: 1-13. |
15 | Xu J, Chen B, Zhang Q J, et al. Prediction of refractive indices of linear polymers by a four-descriptor QSPR model[J]. Polymer, 2004, 45: 8651-8659. |
16 | Khan P M, Rasulev B, Roy K. QSPR modeling of the refractive index for diverse polymers using 2D descriptors[J]. ACS Omega, 2018, 3(10): 13374-13386. |
17 | Hamadanian M, Keshavarz M H, Shahrousvand E. The reliable predicting refractive index for diverse polymers only from structural moieties in repeating unit structures[J]. Materials Today Communications, 2023, 35: 105823. |
18 | Jabeen F, Chen M, Rasulev B, et al. Refractive indices of diverse data set of polymers: a computational QSPR based study[J]. Computational Materials Science, 2017, 137: 215-224. |
19 | Yang C J, Jenekhe S A. Group contribution to molar refraction and refractive index of conjugated polymers[J]. Chemistry of Materials, 1995, 7(7): 1276-1285. |
20 | Cai C, Marsh A, Zhang Y H, et al. Group contribution approach to predict the refractive index of pure organic components in ambient organic aerosol[J]. Environmental Science & Technology, 2017, 51(17): 9683-9690. |
21 | Gharagheizi F, Ilani-Kashkouli P, Kamari A, et al. Group contribution model for the prediction of refractive indices of organic compounds[J]. Journal of Chemical & Engineering Data, 2014, 59(6): 1930-1943. |
22 | 程大海, 伍川, 董红, 等. 原子贡献法估算硅烷及硅氧烷的摩尔折射度[J]. 杭州师范大学学报(自然科学版), 2013, 12(5): 395-403. |
Cheng D H, Wu C, Dong H, et al. The molar refraction estimation of silanes and siloxanes by atom contribution method[J]. Journal of Hangzhou Normal University(Natural Science Edition), 2013, 12(5): 395-403. | |
23 | 程大海, 伍川, 董红, 等. 基团贡献法预测硅烷及硅氧烷的折射率[J]. 杭州师范大学学报(自然科学版), 2014, 13(2): 113-122. |
Cheng D H, Wu C, Dong H, et al. Prediction for the refractive index of silane and siloxane by group contribution method[J]. Journal of Hangzhou Normal University (Natural Science Edition), 2014, 13(2): 113-122. | |
24 | Katritzky A R, Sild S, Karelson M. General quantitative structure-property relationship treatment of the refractive index of organic compounds[J]. Journal of Chemical Information and Computer Sciences, 1998, 38(5): 840-844. |
25 | Kragh H. The Lorenz-Lorentz formula: origin and early history[J]. Substantia. An International Journal of the History of Chemistry, 2018, 2(2): 7-18. |
26 | 蒋立纯, 方仕江. 具有高折光率的苯基乙烯基硅油的合成与表征[J]. 化工新型材料, 2014, 42(2): 136-138, 148. |
Jiang L C, Fang S J. Synthesis and characterization of methyl phenyl vinyl silicone oil with high refractive index[J]. New Chemical Materials, 2014, 42(2): 136-138, 148. | |
27 | 李谷, 符若文, 冯开才. 高分子物理[M]. 北京: 化学工业出版社, 2005. |
Li G, Fu R W, Feng K C. Polymer Physics[M]. Beijing: Chemical Industry Press, 2005. | |
28 | Ihmels E C, Gmehling J. Extension and revision of the group contribution method GCVOL for the prediction of pure compound liquid densities[J]. Industrial & Engineering Chemistry Research, 2003, 42(2): 408-412. |
29 | Wang Y M, Cao R W, Wang M H, et al. Design and synthesis of phenyl silicone rubber with functional epoxy groups through anionic copolymerization and subsequent epoxidation[J]. Polymer, 2020, 186: 122077. |
30 | Fuchise K, Igarashi M, Sato K, et al. Organocatalytic controlled/living ring-opening polymerization of cyclotrisiloxanes initiated by water with strong organic base catalysts[J]. Chemical Science, 2018, 9(11): 2879-2891. |
31 | 周安安, 单国荣, 黄志明, 等. 羟基聚硅氧烷一步合成的速率研究[J]. 化学反应工程与工艺, 2004, 20(1): 53-58. |
Zhou A A, Shan G R, Huang Z M, et al. Study on the rate for preparing hydroxy terminated polydimethylsiloxane in one-step process in the presence of water[J]. Chemical Reaction Engineering and Technology, 2004, 20(1): 53-58. | |
32 | 夏爽, 刘小兵, 赵娜, 等. 环硅氧烷阴离子开环均聚及共聚研究进展[J]. 高分子学报, 2018(12): 1482-1492. |
Xia S, Liu X B, Zhao N, et al. Progress in anionic ring-opening homo/co-polymerization of cyclosiloxanes[J]. Acta Polymerica Sinica, 2018(12): 1482-1492. | |
33 | Doolittle A K. Studies in Newtonian flow(Ⅱ): The dependence of the viscosity of liquids on free-space[J]. Journal of Applied Physics, 1951, 22(8): 1471-1475. |
34 | 郑强, 林宇, 叶一兰, 等. 《高分子物理》教学中WLF方程的系数求解与分析[J]. 高分子通报, 2010(6): 99-105. |
Zheng Q, Lin Y, Ye Y L, et al. The solution and analysis on parameters of WLF equation in teaching the course Polymer Physics[J]. Polymer Bulletin, 2010(6): 99-105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||