CIESC Journal ›› 2024, Vol. 75 ›› Issue (1): 171-189.DOI: 10.11949/0438-1157.20230661
• Reviews and monographs • Previous Articles Next Articles
Yuanshuai QI1(), Wenchao PENG1, Yang LI1, Fengbao ZHANG1, Xiaobin FAN1,2()
Received:
2023-06-30
Revised:
2023-08-14
Online:
2024-03-11
Published:
2024-01-25
Contact:
Xiaobin FAN
齐元帅1(), 彭文朝1, 李阳1, 张凤宝1, 范晓彬1,2()
通讯作者:
范晓彬
作者简介:
齐元帅(1998—),男,硕士研究生,qiyuanshuai@tju.edu.cn
基金资助:
CLC Number:
Yuanshuai QI, Wenchao PENG, Yang LI, Fengbao ZHANG, Xiaobin FAN. Research progress on electrochemical desalination mechanisms and related studies[J]. CIESC Journal, 2024, 75(1): 171-189.
齐元帅, 彭文朝, 李阳, 张凤宝, 范晓彬. 电化学脱盐机理及相关研究进展[J]. 化工学报, 2024, 75(1): 171-189.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Record of publications and citations over the past 20 years using the keywords ‘capacitive deionization’ or ‘electrosorption’ from the Web of Science[16]
Fig.3 (a) Models for describing the structure of an electrical double layer at a positively charged surface[20]; (b) The model of electric double layer at the solid-liquid interface (taking the Stern model as an example)[28]
Fig.5 (a) The fundamental mechanism of charge compensation during the ion electrosorption process: co-ion expulsion, ion exchange, and counterion adsorption in the uncharged state[26]; (b) The evolution of electric charge compensation upon increasing electrode charge, where two subsequent ion swapping events are followed by counterion adsorption[26]; (c) Schematic diagram of a two-dimensional porous electrode model that varies with time[38]
Fig.6 (a) Selective ion removal through the reversible electrochemical reactions of tailored surface groups[73]; (b) Electrochemical characteristics of the anion-selective redox electrode[73]; (c) Introduction of redox-active DAAQ units and the electrochemically reversible quinone/hydroquinone process for cation removal[76]
Fig.9 (a) Electrochemical desalination mechanisms with redox-active electrolytes[111]; (b) Standard redox potentials of various catholyte and anolyte redox couples[112]
1 | Vörösmarty C J, Green P, Salisbury J, et al. Global water resources: vulnerability from climate change and population growth[J]. Science, 2000, 289(5477): 284-288. |
2 | Ercin A E, Hoekstra A Y. Water footprint scenarios for 2050: a global analysis[J]. Environment International, 2014, 64: 71-82. |
3 | Gleick P H, Gilbert F W. Water in Crisis: A Guide to the World’s Fresh Water Resources[M]. New York: Oxford University Press, 1993. |
4 | Oren Y. Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review)[J]. Desalination, 2008, 228(1/2/3): 10-29. |
5 | Porada S, Zhao R, van der Wal A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58(8): 1388-1442. |
6 | Blair J W, Murphy G W. Electrochemical demineralization of water with porous electrodes of large surface area[M]//Advances in Chemistry. Washington, D. C.: American Chemical Society, 1960: 206-223. |
7 | Murphy G W, Caudle D D. Mathematical theory of electrochemical demineralization in flowing systems[J]. Electrochimica Acta, 1967, 12(12): 1655-1664. |
8 | Evans S, Hamilton W S. The mechanism of demineralization at carbon electrodes[J]. Journal of The Electrochemical Society, 1966, 113(12): 1314-1319. |
9 | Evans S, Accomazzo M A, Accomazzo J E. Electrochemically controlled ion exchange (Ⅰ): Mechanism[J]. Journal of the Electrochemical Society, 1969, 116(2): 307. |
10 | Accomazzo M A, Evans S. Electrochemically controlled ion exchange (Ⅱ): Transport processes[J]. Journal of the Electrochemical Society, 1969, 116(2): 309. |
11 | Johnson A M, Newman J. Desalting by means of porous carbon electrodes[J]. Journal of the Electrochemical Society, 1971, 118(3): 510-517. |
12 | Soffer A, Folman M. The electrical double layer of high surface porous carbon electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1972, 38(1): 25-43. |
13 | Richardson J H, Farmer J C, Fix D V, et al. Desalting in wastewater reclamation using capacitive deionization with carbon aerogel electrodes[C]// American Desalting Association 1996 Biennial Conference and Exposition. Washington, DC (United States), 1996. |
14 | Farmer J C, Fix D V, Mack G V, et al. Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes[J]. Journal of the Electrochemical Society, 1996, 143(1): 159-169. |
15 | Farmer J C, Fix D V, Mack G V, et al. Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes[J]. Journal of Applied Electrochemistry, 1996, 26(10): 1007-1018. |
16 | Xu X T, Eguchi M, Asakura Y, et al. Meta-organic framework derivatives for promoted capacitive deionization of oxygenated saline water[J]. Energy & Environmental Science, 2023, 16(5): 1815-1820. |
17 | Srimuk P, Su X, Yoon J, et al. Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements[J]. Nature Reviews Materials, 2020, 5(7): 517-538. |
18 | 武婷婷. 碳材料的表面改性及其电容去离子性能研究[D]. 大连: 大连理工大学, 2017. |
Wu T T. Surface modification of carbon materials for capacitive deionization[D]. Dalian: Dalian University of Technology, 2017. | |
19 | 王世轩, 蔡延萌, 徐世昌, 等. 聚间苯二胺/碳纳米管复合材料制备及其电容法脱盐研究[J]. 化学工业与工程, 2022, 39(2): 90-99. |
Wang S X, Cai Y M, Xu S C, et al. Preparation and performance test of poly-m-phenylene diamine and CNT composite material in capacitive deionization process[J]. Chemical Industry and Engineering, 2022, 39(2): 90-99. | |
20 | Sun K G, Tebyetekerwa M, Wang C, et al. Electrocapacitive deionization: mechanisms, electrodes, and cell designs[J]. Advanced Functional Materials, 2023, 33(18): 2213578. |
21 | Liu E Y, Lee L Y, Ong S L, et al. Treatment of industrial brine using capacitive deionization (CDI) towards zero liquid discharge—challenges and optimization[J]. Water Research, 2020, 183: 116059. |
22 | Bone S E, Steinrück H G, Toney M F. Advanced characterization in clean water technologies[J]. Joule, 2020, 4(8): 1637-1659. |
23 | Sharma N, Peterson V K. In situ neutron powder diffraction studies of lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2012, 16(5): 1849-1856. |
24 | Dixit M B, Park J S, Kenesei P, et al. Status and prospect of in situ and operando characterization of solid-state batteries[J]. Energy & Environmental Science, 2021, 14(9): 4672-4711. |
25 | Atkins D, Ayerbe E, Benayad A, et al. Understanding battery interfaces by combined characterization and simulation approaches: challenges and perspectives[J]. Advanced Energy Materials, 2022, 12(17): 2102687. |
26 | Suss M E, Porada S, Sun X, et al. Water desalination via capacitive deionization: what is it and what can we expect from it?[J]. Energy & Environmental Science, 2015, 8(8): 2296-2319. |
27 | Béguin F, Frąckowiak E. 超级电容器:材料、系统及应用[M]. 北京: 机械工业出版社, 2014. |
Béguin F, Frąckowiak E. Supercapacitors: Materials, Systems, and Applications[M]. Beijing: China Machine Press, 2014. | |
28 | Kumar S, Aldaqqa N M, Alhseinat E, et al. Electrode materials for desalination of water via capacitive deionization[J]. Angewandte Chemie International Edition, 2023: e202302180. |
29 | Helmholtz H. Studien über electrische grenzschichten[J]. Annalen Der Physik, 1879, 243(7): 337-382. |
30 | Gouy M. Sur la constitution de la charge électrique à la surface d’un électrolyte[J]. Journal De Physique Théorique et Appliquée, 1910, 9(1): 457-468. |
31 | Chapman D L. A contribution to the theory of electrocapillarity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1913, 25(148): 475-481. |
32 | Stern O. Zur theorie der elektrolytischen doppelschicht[J]. Zeitschrift Für Elektrochemie Und Angewandte Physikalische Chemie, 1924, 30(21/22): 508-516. |
33 | Biesheuvel P M, Fu Y, Bazant M Z. Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes[J]. Russian Journal of Electrochemistry, 2012, 48(6): 580-592. |
34 | Zhao R, Biesheuvel P M, van der Wal A. Energy consumption and constant current operation in membrane capacitive deionization[J]. Energy & Environmental Science, 2012, 5(11): 9520-9527. |
35 | Biesheuvel P M, Fu Y Q, Bazant M Z. Diffuse charge and Faradaic reactions in porous electrodes[J]. Physical Review E, 2011, 83(6): 061507. |
36 | Biesheuvel P M, Porada S, Levi M, et al. Attractive forces in microporous carbon electrodes for capacitive deionization[J]. Journal of Solid State Electrochemistry, 2014, 18(5): 1365-1376. |
37 | Biesheuvel P M, Zhao R, Porada S, et al. Theory of membrane capacitive deionization including the effect of the electrode pore space[J]. Journal of Colloid and Interface Science, 2011, 360(1): 239-248. |
38 | Porada S, Borchardt L, Oschatz M, et al. Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization[J]. Energy & Environmental Science, 2013, 6(12): 3700-3712. |
39 | Porada S, Bryjak M, van der Wal A, et al. Effect of electrode thickness variation on operation of capacitive deionization[J]. Electrochimica Acta, 2012, 75: 148-156. |
40 | Biesheuvel P M, Bazant M Z. Nonlinear dynamics of capacitive charging and desalination by porous electrodes[J]. Physical Review E, 2010, 81(3): 031502. |
41 | Kim T, Dykstra J E, Porada S, et al. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage[J]. Journal of Colloid and Interface Science, 2015, 446: 317-326. |
42 | 刘红, 王刚, 王六平, 等. 电容去离子脱盐技术: 离子交换膜复合活性炭电极的性能[J]. 化工学报, 2012, 63(5): 1512-1516. |
Liu H, Wang G, Wang L P, et al. Capacitive deionization (CDI) technology for desalination of sea water: properties of carbon electrode materials made of activated carbon and ion-exchange membranes[J]. CIESC Journal, 2012, 63(5): 1512-1516. | |
43 | 王刚, 车小平, 汪仕勇, 等. 水溶性带电聚合物黏结剂修饰炭电极用于增强电容去离子性能[J]. 化工学报, 2022, 73(4): 1763-1771. |
Wang G, Che X P, Wang S Y, et al. Carbon electrodes modified with water-soluble charged polymer binder for enhanced capacitive deionization performance[J]. CIESC Journal, 2022, 73(4): 1763-1771. | |
44 | Wang G, Pan C, Wang L P, et al. Activated carbon nanofiber webs made by electrospinning for capacitive deionization[J]. Electrochimica Acta, 2012, 69: 65-70. |
45 | Fleischmann S, Mitchell J B, Wang R C, et al. Pseudocapacitance: from fundamental understanding to high power energy storage materials[J]. Chemical Reviews, 2020, 120(14): 6738-6782. |
46 | Shao H, Wu Y C, Lin Z F, et al. Nanoporous carbon for electrochemical capacitive energy storage[J]. Chemical Society Reviews, 2020, 49(10): 3005-3039. |
47 | Conway B E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications[M]. New York: Plenum Press, 1999. |
48 | Huang J S, Sumpter B G, Meunier V. Theoretical model for nanoporous carbon supercapacitors[J]. Angewandte Chemie International Edition, 2008, 47(3): 520-524. |
49 | Huang J S, Sumpter B G, Meunier V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes[J]. Chemistry-A European Journal, 2008, 14(22): 6614-6626. |
50 | Largeot C, Portet C, Chmiola J, et al. Relation between the ion size and pore size for an electric double-layer capacitor[J]. Journal of the American Chemical Society, 2008, 130(9): 2730-2731. |
51 | Ania C O, Pernak J, Stefaniak F, et al. Polarization-induced distortion of ions in the pores of carbon electrodes for electrochemical capacitors[J]. Carbon, 2009, 47(14): 3158-3166. |
52 | de Levie R. On porous electrodes in electrolyte solutions (Ⅰ): Capacitance effects[J]. Electrochimica Acta, 1963, 8(10): 751-780. |
53 | Newman J S, Balsara N P. Electrochemical Systems[M]. John Wiley & Sons, 2021. |
54 | Porada S, Weinstein L, Dash R, et al. Water desalination using capacitive deionization with microporous carbon electrodes[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1194-1199. |
55 | Schipper F, Nayak P K, Erickson E M, et al. Study of cathode materials for lithium-ion batteries: recent progress and new challenges[J]. Inorganics, 2017, 5(2): 32. |
56 | Li H, Zou L, Pan L, et al. Novel graphene-like electrodes for capacitive deionization[J]. Environmental Science & Technology, 2010, 44(22): 8692-8697. |
57 | Chang L M, Li J R, Duan X Y, et al. Porous carbon derived from metal-organic framework (MOF) for capacitive deionization electrode[J]. Electrochimica Acta, 2015, 176: 956-964. |
58 | Wang Z M, Xu X T, Kim J, et al. Nanoarchitectured metal-organic framework/polypyrrole hybrids for brackish water desalination using capacitive deionization[J]. Materials Horizons, 2019, 6(7): 1433-1437. |
59 | Yan C J, Zou L D, Short R. Single-walled carbon nanotubes and polyaniline composites for capacitive deionization[J]. Desalination, 2012, 290: 125-129. |
60 | Zhang Y, Prehal C, Jiang H L, et al. Ionophobicity of carbon sub-nanometer pores enables efficient desalination at high salinity[J]. Cell Reports Physical Science, 2022, 3(1): 100689. |
61 | Kim C, Lee J H, Srimuk P, et al. Concentration-gradient multichannel flow-stream membrane capacitive deionization cell for high desalination capacity of carbon electrodes[J]. ChemSusChem, 2017, 10(24): 4914-4920. |
62 | Kim C, Srimuk P, Lee J H, et al. Semi-continuous capacitive deionization using multi-channel flow stream and ion exchange membranes[J]. Desalination, 2018, 425: 104-110. |
63 | Kang J S, Kim S, Chung D Y, et al. Rapid inversion of surface charges in heteroatom-doped porous carbon: a route to robust electrochemical desalination[J]. Advanced Functional Materials, 2020, 30(9): 1909387. |
64 | Peng C, Zhang S W, Jewell D, et al. Carbon nanotube and conducting polymer composites for supercapacitors[J]. Progress in Natural Science, 2008, 18(7): 777-788. |
65 | Ahualli S, Iglesias G R, Fernández M M, et al. Use of soft electrodes in capacitive deionization of solutions[J]. Environmental Science & Technology, 2017, 51(9): 5326-5333. |
66 | Kong H, Yang M, Miao Y C, et al. Polypyrrole as a novel chloride-storage electrode for seawater desalination[J]. Energy Technology, 2019, 7(11): 1900835. |
67 | Park J H, Park O O, Shin K H, et al. An electrochemical capacitor based on a Ni(OH)2/activated carbon composite electrode[J]. Electrochemical and Solid-State Letters, 2002, 5(2): H7-H10. |
68 | Zhao Y, Lai Q Y, Hao Y J, et al. Study of electrochemical performance for AC/(Ni1/3Co1/3Mn1/3)(OH)2 [J]. Journal of Alloys and Compounds, 2009, 471(1/2): 466-469. |
69 | Ren Y Y, Mao X W, Hatton T A. An asymmetric electrochemical system with complementary tunability in hydrophobicity for selective separations of organics[J]. ACS Central Science, 2019, 5(8): 1396-1406. |
70 | Raudsepp T, Marandi M, Tamm T, et al. Influence of ion-exchange on the electrochemical properties of polypyrrole films[J]. Electrochimica Acta, 2014, 122: 79-86. |
71 | Kim Y, Lin Z, Jeon I, et al. Polyaniline nanofiber electrodes for reversible capture and release of mercury(Ⅱ) from water[J]. Journal of the American Chemical Society, 2018, 140(43): 14413-14420. |
72 | Cui H, Li Q, Qian Y, et al. Defluoridation of water via electrically controlled anion exchange by polyaniline modified electrode reactor[J]. Water Research, 2011, 45(17): 5736-5744. |
73 | Su X, Kulik H J, Jamison T F, et al. Anion-selective redox electrodes: electrochemically mediated separation with heterogeneous organometallic interfaces[J]. Advanced Functional Materials, 2016, 26(20): 3394-3404. |
74 | Su X, Tan K J, Elbert J, et al. Asymmetric Faradaic systems for selective electrochemical separations[J]. Energy & Environmental Science, 2017, 10(5): 1272-1283. |
75 | Su X, Kushima A, Halliday C, et al. Electrochemically-mediated selective capture of heavy metal chromium and arsenic oxyanions from water[J]. Nature Communications, 2018, 9(1): 4701. |
76 | Li Y Q, Ding Z B, Zhang X L, et al. Novel hybrid capacitive deionization constructed by a redox-active covalent organic framework and its derived porous carbon for highly efficient desalination[J]. Journal of Materials Chemistry A, 2019, 7(44): 25305-25313. |
77 | Huggins R A. Advanced Batteries: Materials Science Aspects[M]. New York: Springer, 2008. |
78 | Augustyn V, Gogotsi Y. 2D materials with nanoconfined fluids for electrochemical energy storage[J]. Joule, 2017, 1(3): 443-452. |
79 | Guo L, Huang Y X, Ding M, et al. A high performance electrochemical deionization method to desalinate brackish water with an FePO4/RGO nanocomposite[J]. Journal of Materials Chemistry A, 2018, 6(19): 8901-8908. |
80 | Chayambuka K, Mulder G, Danilov D L, et al. Sodium-ion battery materials and electrochemical properties reviewed[J]. Advanced Energy Materials, 2018, 8(16): 1800079. |
81 | Meng J S, Guo H C, Niu C J, et al. Advances in structure and property optimizations of battery electrode materials[J]. Joule, 2017, 1(3): 522-547. |
82 | Sun Y, Zhao L, Pan H L, et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries[J]. Nature Communications, 2013, 4: 1870. |
83 | Srimuk P, Lee J H, Fleischmann S, et al. Faradaic deionization of brackish and sea water via pseudocapacitive cation and anion intercalation into few-layered molybdenum disulfide[J]. Journal of Materials Chemistry A, 2017, 5(30): 15640-15649. |
84 | Srimuk P, Lee J H, Budak Ö, et al. In situ tracking of partial sodium desolvation of materials with capacitive, pseudocapacitive, and battery-like charge/discharge behavior in aqueous electrolytes[J]. Langmuir, 2018, 34(44): 13132-13143. |
85 | Mathis T S, Kurra N, Wang X H, et al. Energy storage data reporting in perspective—guidelines for interpreting the performance of electrochemical energy storage systems[J]. Advanced Energy Materials, 2019, 9(39): 1902007. |
86 | Ridley P, Andris R, Pomerantseva E A. HCDI performance of Na-2×3 and Na-2×4 nanowires for water desalination[C]//SPIE Nanoscience + Engineering. San Diego, California, USA, 2019, 11085: 142-149. |
87 | Nayak P K, Yang L T, Brehm W, et al. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises[J]. Angewandte Chemie International Edition, 2018, 57(1): 102-120. |
88 | Lee J H, Srimuk P, Zwingelstein R, et al. Sodium ion removal by hydrated vanadyl phosphate for electrochemical water desalination[J]. Journal of Materials Chemistry A, 2019, 7(8): 4175-4184. |
89 | Zhu Y, Peng L L, Chen D H, et al. Intercalation pseudocapacitance in ultrathin VOPO4 nanosheets: toward high-rate alkali-ion-based electrochemical energy storage[J]. Nano Letters, 2016, 16(1): 742-747. |
90 | Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2(2): 16098. |
91 | Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides[J]. ACS Nano, 2012, 6(2): 1322-1331. |
92 | Tan C L, Cao X H, Wu X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9): 6225-6331. |
93 | Chen Z Q, Xu X T, Liu Y, et al. Ultra-durable and highly-efficient hybrid capacitive deionization by MXene confined MoS2 heterostructure[J]. Desalination, 2022, 528: 115616. |
94 | Srimuk P, Halim J, Lee J H, et al. Two-dimensional molybdenum carbide (MXene) with divacancy ordering for brackish and seawater desalination via cation and anion intercalation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3739-3747. |
95 | Huang S H, Mochalin V N. Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions[J]. Inorganic Chemistry, 2019, 58(3): 1958-1966. |
96 | He H, Lu P F, Wu L Y, et al. Structural properties and phase transition of Na adsorption on monolayer MoS2 [J]. Nanoscale Research Letters, 2016, 11(1): 330. |
97 | Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712. |
98 | Wang X Z, Yao Z P, Hwang S, et al. In situ electron microscopy investigation of sodiation of titanium disulfide nanoflakes[J]. ACS Nano, 2019, 13(8): 9421-9430. |
99 | Paulitsch B, Yun J, Bandarenka A S. Electrodeposited Na2VO x [Fe(CN)6] films as a cathode material for aqueous Na-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(9): 8107-8112. |
100 | Masquelier C, Croguennec L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries[J]. Chemical Reviews, 2013, 113(8): 6552-6591. |
101 | Scrosati B, Hassoun J, Sun Y K. Lithium-ion batteries. A look into the future[J]. Energy & Environmental Science, 2011, 4(9): 3287-3295. |
102 | Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
103 | Srimuk P, Husmann S, Presser V. Low voltage operation of a silver/silver chloride battery with high desalination capacity in seawater[J]. RSC Advances, 2019, 9(26): 14849-14858. |
104 | Hao Z W, Sun X Q, Chen J B, et al. Recent progress and challenges in Faradic capacitive desalination: from mechanism to performance[J]. Small, 2023, 19(33): e2300253. |
105 | Grygolowicz-Pawlak E, Sohail M, Pawlak M, et al. Coulometric sodium chloride removal system with nafion membrane for seawater sample treatment[J]. Analytical Chemistry, 2012, 84(14): 6158-6165. |
106 | Nam D H, Choi K S. Bismuth as a new chloride-storage electrode enabling the construction of a practical high capacity desalination battery[J]. Journal of the American Chemical Society, 2017, 139(32): 11055-11063. |
107 | Lee J H, Srimuk P, Fleischmann S, et al. Redox-electrolytes for non-flow electrochemical energy storage: a critical review and best practice[J]. Progress in Materials Science, 2019, 101: 46-89. |
108 | Narayanan R, Bandaru P R. High rate capacity through redox electrolytes confined in macroporous electrodes[J]. Journal of the Electrochemical Society, 2014, 162(1): A86-A91. |
109 | Chen L B, Bai H, Huang Z F, et al. Mechanism investigation and suppression of self-discharge in active electrolyte enhanced supercapacitors[J]. Energy & Environmental Science, 2014, 7(5): 1750-1759. |
110 | Lee J H, Krüner B, Tolosa A, et al. Tin/vanadium redox electrolyte for battery-like energy storage capacity combined with supercapacitor-like power handling[J]. Energy & Environmental Science, 2016, 9(11): 3392-3398. |
111 | Lee J H, Srimuk P, Zornitta R L, et al. High electrochemical seawater desalination performance enabled by an iodide redox electrolyte paired with a sodium superionic conductor[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(11): 10132-10142. |
112 | Chun S E, Evanko B, Wang X F, et al. Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge[J]. Nature Communications, 2015, 6(1): 7818. |
113 | 蓝闽波. 纳米材料测试技术[M]. 上海: 华东理工大学出版社, 2009. |
Lan M B. Nano-Material Testing Technology[M]. Shanghai: East China University of Science and Technology Press, 2009. | |
114 | Shi W H, Liu X Y, Deng T Q, et al. Enabling superior sodium capture for efficient water desalination by a tubular polyaniline decorated with prussian blue nanocrystals[J]. Advanced Materials, 2020, 32(33):1907404. |
115 | Vafakhah S, Saeedikhani M, Huang S Z, et al. Tungsten disulfide-reduced GO/CNT aerogel: a tuned interlayer spacing anode for efficient water desalination[J]. Journal of Materials Chemistry A, 2021, 9(17): 10758-10768. |
116 | Vafakhah S, Saeedikhani M, Tanhaei M, et al. An energy efficient bi-functional electrode for continuous cation-selective capacitive deionization[J]. Nanoscale, 2020, 12(45): 22917-22927. |
117 | Chang W T, Chen P A, Chen W R, et al. Simultaneous capacitive deionisation and disinfection of saltwater by Ag@C/rGO electrodes[J]. Environmental Chemistry, 2022, 18(8): 352-359. |
118 | Prehal C, Weingarth D, Perre E, et al. Tracking the structural arrangement of ions in carbon supercapacitor nanopores using in situ small-angle X-ray scattering[J]. Energy & Environmental Science, 2015, 8(6): 1725-1735. |
119 | Jiang Q, Zhang L Q, Wang H L, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3- based perovskite solar cells[J]. Nature Energy, 2017, 2: 16177. |
120 | Li J, Han C J, Ou X W, et al. Concentrated electrolyte for high-performance Ca-ion battery based on organic anode and graphite cathode[J]. Angewandte Chemie International Edition, 2022, 61(14): e202116668. |
121 | Richey F W, Tran C, Kalra V, et al. Ionic liquid dynamics in nanoporous carbon nanofibers in supercapacitors measured with in operando infrared spectroelectrochermistry[J]. The Journal of Physical Chemistry C, 2014, 118(38): 21846-21855. |
122 | Papaderakis A A, Ejigu A, Yang J, et al. Anion intercalation into graphite drives surface wetting[J]. Journal of the American Chemical Society, 2023, 145(14): 8007-8020. |
123 | Sun K G, Wang C, Tebyetekerwa M, et al. Electrocapacitive desalination with nitrogen-doped hierarchically structured carbon prepared using a sustainable salt-template method[J]. Chemical Engineering Journal, 2022, 446: 137211. |
124 | Mao M L, Yan T T, Chen G R, et al. Selective capacitive removal of Pb2+ from wastewater over redox-active electrodes[J]. Environmental Science & Technology, 2021, 55(1): 730-737. |
125 | Wang G Z, Yan T T, Shen J J, et al. Beneficial synergy of adsorption-intercalation-conversion mechanisms in Nb2O5@nitrogen-doped carbon frameworks for promoted removal of metal ions via hybrid capacitive deionization[J]. Environmental Science. Nano, 2021, 8(1): 122-130. |
126 | Zhou R J, Li J X, Wei W H, et al. Atomic substituents effect on boosting desalination performances of Zn-doped Na x CoO2 [J]. Desalination, 2020, 496: 114695. |
127 | Han J L, Yan T T, Shen J J, et al. Capacitive deionization of saline water by using MoS2-graphene hybrid electrodes with high volumetric adsorption capacity[J]. Environmental Science & Technology, 2019, 53(21): 12668-12676. |
128 | Wang H, Forse A C, Griffin J M, et al. In situ NMR spectroscopy of supercapacitors: insight into the charge storage mechanism[J]. Journal of the American Chemical Society, 2013, 135(50): 18968-18980. |
129 | Luo Z X, Xing Y Z, Liu S B, et al. Dehydration of ions in voltage-gated carbon nanopores observed by in situ NMR[J]. The Journal of Physical Chemistry Letters, 2015, 6(24): 5022-5026. |
130 | Levi M D, Salitra G, Levy N, et al. Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage[J]. Nature Materials, 2009, 8(11): 872-875. |
131 | Levi M D, Sigalov S, Aurbach D, et al. In situ electrochemical quartz crystal admittance methodology for tracking compositional and mechanical changes in porous carbon electrodes[J]. The Journal of Physical Chemistry C, 2013, 117(29): 14876-14889. |
132 | Shpigel N, Levi M D, Sigalov S, et al. Novel in situ multiharmonic EQCM-D approach to characterize complex carbon pore architectures for capacitive deionization of brackish water[J]. Journal of Physics: Condensed Matter, 2016, 28(11): 114001. |
133 | Yu F, Yang Z Q, Zhang X C, et al. V2CT x -MXene partially derived hybrid VS2/V2CT x electrode for capacitive deionization with exceptional rate and capacity[J]. Journal of Materials Chemistry A, 2022, 10(44): 23531-23541. |
134 | Tsai W Y, Taberna P L, Simon P. Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons[J]. Journal of the American Chemical Society, 2014, 136(24): 8722-8728. |
135 | Breitsprecher K, Janssen M, Srimuk P, et al. How to speed up ion transport in nanopores[J]. Nature Communications, 2020, 11(1): 6085. |
136 | Jeanmairet G, Rotenberg B, Salanne M. Microscopic simulations of electrochemical double-layer capacitors[J]. Chemical Reviews, 2022, 122(12): 10860-10898. |
137 | Xu K, Shao H, Lin Z F, et al. Computational insights into charge storage mechanisms of supercapacitors[J]. Energy & Environmental Materials, 2020, 3(3): 235-246. |
138 | Spohr E, Sovyak E, Trokhymchuk A, et al. Electrostatic control of occupancy and valence selectivity in a charged nanometer-sized cylindrical pore[J]. Materialwissenschaft Und Werkstofftechnik-Materialwiss Werkstofftech, 2009, 40(4): 247-254. |
139 | Li X W, Xu S P, Ke P L, et al. Thickness dependence of properties and structure of ultrathin tetrahedral amorphous carbon films: a molecular dynamics simulation[J]. Surface & Coatings Technology, 2014, 258: 938-942. |
140 | Kiyohara K, Yamamoto Y, Kawai Y. Selective adsorption of monovalent cations in porous electrodes[J]. Physical Chemistry Chemical Physics, 2020, 22(43): 25184-25194. |
141 | Liang M X, Liu N N, Zhang X C, et al. A reverse-defect-engineering strategy toward high edge-nitrogen-doped nanotube-like carbon for high-capacity and stable sodium ion capture[J]. Advanced Functional Materials, 2022, 32(49): 2209741. |
142 | Huo S L, Zhang P, He M M, et al. Sustainable development of ultrathin porous carbon nanosheets with highly accessible defects from biomass waste for high-performance capacitive desalination[J]. Green Chemistry, 2021, 23(21): 8554-8565. |
143 | Huo S L, Song X, Zhao Y B, et al. Insight into the significant contribution of intrinsic carbon defects for the high-performance capacitive desalination of brackish water[J]. Journal of Materials Chemistry A, 2020, 8(38): 19927-19937. |
144 | Li L S, Xu S Z, Carter E A. First-principles modeling of sodium ion and water intercalation into titanium disulfide interlayers for water desalination[J]. Chemistry of Materials, 2020, 32(24): 10678-10687. |
145 | Qing L Y, Li Y, Tang W Q, et al. Dynamic adsorption of ions into like-charged nanospace: a dynamic density functional theory study[J]. Langmuir, 2019, 35(12): 4254-4262. |
146 | Liu M Q, Xu M, Xue Y F, et al. Efficient capacitive deionization using natural basswood-derived, freestanding, hierarchically porous carbon electrodes[J]. ACS Applied Materials & Interfaces, 2018, 10(37): 31260-31270. |
[1] | Wen WEN, Huiyan WANG, Jinghong ZHOU, Yueqiang CAO, Xinggui ZHOU. Simulation study on the impact of graphite anode particles on lithium-ion battery capacity fading and SEI film growth [J]. CIESC Journal, 2024, 75(1): 366-376. |
[2] | Youjia WANG, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress on separation technology of diesel hydrocarbon components [J]. CIESC Journal, 2024, 75(1): 20-32. |
[3] | Guoyi XIAN, Lifang CHEN, Zhiwen QI. DFT-based study of liquid-phase Beckmann rearrangement mechanism of cyclohexanone oxime [J]. CIESC Journal, 2024, 75(1): 302-311. |
[4] | Xiangjun MENG, Yingxi HUA, Changjin ZHANG, Chi ZHANG, Linrui YANG, Ruoxi YANG, Jianyi LIU, Chunjian XU. Preparation and purification of 6N electronic-grade deuterium gas [J]. CIESC Journal, 2024, 75(1): 377-390. |
[5] | Kexin YAN, Hongtao JIANG, Weiqun GAO, Xiaohui GUO, Weizhen SUN, Ling ZHAO. Recent advances in the removal of trace boron and phosphorus impurities from electronic grade silicon raw materials [J]. CIESC Journal, 2024, 75(1): 83-94. |
[6] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[7] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[8] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[9] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[10] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[11] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[12] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[13] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[14] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[15] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||