CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1382-1393.DOI: 10.11949/0438-1157.20231395
• Reviews and monographs • Previous Articles Next Articles
Tao SUN(), Meili SUN, Ran LU, Yizi YU, Kaifeng WANG, Xiaojun JI()
Received:
2023-12-29
Revised:
2024-03-22
Online:
2024-06-06
Published:
2024-04-25
Contact:
Xiaojun JI
孙涛(), 孙美莉, 陆然, 余一梓, 王凯峰, 纪晓俊()
通讯作者:
纪晓俊
作者简介:
孙涛(1996—),男,博士研究生,taosun@njtech.edu.cn
基金资助:
CLC Number:
Tao SUN, Meili SUN, Ran LU, Yizi YU, Kaifeng WANG, Xiaojun JI. Synthetic biology of yeasts drives green biomanufacturing of succinic acid[J]. CIESC Journal, 2024, 75(4): 1382-1393.
孙涛, 孙美莉, 陆然, 余一梓, 王凯峰, 纪晓俊. 合成生物学改造酵母驱动丁二酸绿色生物制造[J]. 化工学报, 2024, 75(4): 1382-1393.
Add to citation manager EndNote|Ris|BibTeX
项目 | 酵母 | 细菌 |
---|---|---|
耐酸性 | 高,但需要ATP维持 | 低 |
CO2排放 | 释放CO2 | 固定CO2 |
限制因素 | 底物得率低 | 生产成本高 |
碱中和剂 | 不添加 | 需要且易染菌 |
下游处理 | 步骤相对少 | 需要电渗析或酸化 |
提取副产物 | 无 | 硫酸铵(硫酸钙) |
设备和能源 | 相对较少 | 需要中和及处理设备 |
Table 1 Comparison of succinic acid production using bacteria and yeasts
项目 | 酵母 | 细菌 |
---|---|---|
耐酸性 | 高,但需要ATP维持 | 低 |
CO2排放 | 释放CO2 | 固定CO2 |
限制因素 | 底物得率低 | 生产成本高 |
碱中和剂 | 不添加 | 需要且易染菌 |
下游处理 | 步骤相对少 | 需要电渗析或酸化 |
提取副产物 | 无 | 硫酸铵(硫酸钙) |
设备和能源 | 相对较少 | 需要中和及处理设备 |
酵母 种类 | 出发菌株 | 代谢工程改造策略 | 底物 | 是否添加 中和剂 | 产量、得率、生产强度 | 参考文献 |
---|---|---|---|---|---|---|
酿酒 酵母 | 酿酒酵母XU-1 | 敲除SDH1-2 | 葡萄糖 | 否 | 产量(409±68) mg/L,提升1.9倍 | [ |
酿酒酵母AH22ura3 | 敲除SDH1-2、IDH1、IDP1 | 葡萄糖 | 否 | 产量3.62 g/L,提升4.8倍;得率 0.11 mol/mol | [ | |
酿酒酵母TAM | 表达ScPYC2、ScMDH3、ScFRDS1、EcFUMC,敲除ScFUM1、GPD1 | 葡萄糖 | 否,pH 3.8 | 产量(12.97±0.42) g/L;得率0.21 mol/mol | [ | |
酿酒酵母UBR2CBS-DHA | 表达ScMDH3、RoFUM、TbFRDg、AnDCT-02 | 甘油 | 是,pH 5.0 | 产量10.7 g/L;得率(0.22±0.01) g/g | [ | |
酿酒酵母CEN.PK113-1A | 表达CjFPS1、OpGDH、ScDAK1、ScMDH3、RoFUM、TbFRDg、AnDCT-02、ScPYC2,敲除GUT1 | 甘油 | 是,pH 5.0~6.0 | 产量35 g/L;得率0.6 g/g,理论得率的47.1% | [ | |
酿酒酵母BY4739 | 敲除SDH1-2、ADH1-5,表达SpMAE1 | 葡萄糖 | 否 | 得率(2.36±0.06) mol/mol | [ | |
酿酒酵母CEN.PK113-5D | 敲除SDH3、SER3、SER33,适应性进化, 表达ScICL1 | 葡萄糖 | 是,pH 5.0 | 产量0.9 g/L,提高了30倍;得率0.05 g/g | [ | |
酿酒酵母BY4741 | 敲除DIC1 | 葡萄糖 | 是,pH 5.0 | 得率0.02 mol/mol | [ | |
解脂耶氏酵母 | 解脂耶氏酵母Po1f | 敲除SDH2,化学诱变 | 甘油 | 否,pH 3.2 | 产量17.4 g/L | [ |
解脂耶氏酵母Po1f | 敲除SDH5 | 粗甘油 | 是,pH 6 | 产量160.2 g/L;得率0.40 g/g,理论得率的62.4%;生产强度0.40 g/(L·h) | [ | |
解脂耶氏酵母H222 | SDH2启动子替换为诱导型启动子 | 甘油 | 是,pH 5 | 产量25 g/L;得率0.26 g/g;生产强度0.152 g/(L·h) | [ | |
解脂耶氏酵母ST6512 | 截短SDH1启动子,表达AsPCK、YlICL、YlMLS、YlMDH、YlSCS2、YlKGDH,适应性进化 | 葡萄糖 | 是,pH 5 | 产量35.3 g/L;得率0.26 g/g;生产强度0.60 g/(L·h) | [ | |
解脂耶氏酵母PGC01003 | 敲除ACH1,表达ScPCK、YlSCS2 | 甘油 | 否,pH 3.4 | 产量110.7 g/L;得率0.53 g/g,理论得率的81.8% | [ | |
解脂耶氏酵母PGC91 | 表达TbFRD×2、EcFUM、YlMDH1、YlPYC、YlMDH2、YlFUM、SpMAE1,适应性进化 | 葡萄糖 | 否,pH 2.49 | 产量111.9 g/L;得率0.79 g/g;生产强度1.79 g/(L·h) | [ | |
解脂耶氏酵母PGC62 | 表达SpMAE1、TbFRD、YlSCS2、YlICL、YlMLS、YlYHM2 | 葡萄糖 | 是,pH 5.5 | 产量101.4 g/L;得率0.37 g/g;生产强度0.70 g/(L·h) | [ | |
解脂耶氏酵母PGC01003 | — | 甘油 | 是,pH 6.0 | 产量198.2 g/L;生产强度0.84 g/(L·h) | [ | |
解脂耶氏酵母PGC01003 | — | 粗甘油 | 是,pH 6.0 | 产量209.7 g/L;生产强度0.65 g/(L·h) | [ | |
解脂耶氏酵母PSA02004 | 代谢进化 | 葡萄糖 | 否 | 产量76.8 g/L | [ | |
东方伊萨酵母 | 东方伊萨酵母SD108 | 表达IoPYC、IoMDH、IoFUM、TbFRD | 葡萄糖 | 否 | 产量11.63 g/L;得率0.12 g/g;生产强度0.11 g/(L·h) | [ |
东方伊萨酵母SA | 表达SpMAE1、PaGDH、IoDAK,敲除ADH、GPD、g3473、g3837 | 葡萄糖和甘油 | 否,pH 3.0 | 产量109.5 g/L;得率0.65 g/g;生产强度0.54 g/(L·h) | [ |
Table 2 Synthetic biology of yeasts to accumulate succinic acid
酵母 种类 | 出发菌株 | 代谢工程改造策略 | 底物 | 是否添加 中和剂 | 产量、得率、生产强度 | 参考文献 |
---|---|---|---|---|---|---|
酿酒 酵母 | 酿酒酵母XU-1 | 敲除SDH1-2 | 葡萄糖 | 否 | 产量(409±68) mg/L,提升1.9倍 | [ |
酿酒酵母AH22ura3 | 敲除SDH1-2、IDH1、IDP1 | 葡萄糖 | 否 | 产量3.62 g/L,提升4.8倍;得率 0.11 mol/mol | [ | |
酿酒酵母TAM | 表达ScPYC2、ScMDH3、ScFRDS1、EcFUMC,敲除ScFUM1、GPD1 | 葡萄糖 | 否,pH 3.8 | 产量(12.97±0.42) g/L;得率0.21 mol/mol | [ | |
酿酒酵母UBR2CBS-DHA | 表达ScMDH3、RoFUM、TbFRDg、AnDCT-02 | 甘油 | 是,pH 5.0 | 产量10.7 g/L;得率(0.22±0.01) g/g | [ | |
酿酒酵母CEN.PK113-1A | 表达CjFPS1、OpGDH、ScDAK1、ScMDH3、RoFUM、TbFRDg、AnDCT-02、ScPYC2,敲除GUT1 | 甘油 | 是,pH 5.0~6.0 | 产量35 g/L;得率0.6 g/g,理论得率的47.1% | [ | |
酿酒酵母BY4739 | 敲除SDH1-2、ADH1-5,表达SpMAE1 | 葡萄糖 | 否 | 得率(2.36±0.06) mol/mol | [ | |
酿酒酵母CEN.PK113-5D | 敲除SDH3、SER3、SER33,适应性进化, 表达ScICL1 | 葡萄糖 | 是,pH 5.0 | 产量0.9 g/L,提高了30倍;得率0.05 g/g | [ | |
酿酒酵母BY4741 | 敲除DIC1 | 葡萄糖 | 是,pH 5.0 | 得率0.02 mol/mol | [ | |
解脂耶氏酵母 | 解脂耶氏酵母Po1f | 敲除SDH2,化学诱变 | 甘油 | 否,pH 3.2 | 产量17.4 g/L | [ |
解脂耶氏酵母Po1f | 敲除SDH5 | 粗甘油 | 是,pH 6 | 产量160.2 g/L;得率0.40 g/g,理论得率的62.4%;生产强度0.40 g/(L·h) | [ | |
解脂耶氏酵母H222 | SDH2启动子替换为诱导型启动子 | 甘油 | 是,pH 5 | 产量25 g/L;得率0.26 g/g;生产强度0.152 g/(L·h) | [ | |
解脂耶氏酵母ST6512 | 截短SDH1启动子,表达AsPCK、YlICL、YlMLS、YlMDH、YlSCS2、YlKGDH,适应性进化 | 葡萄糖 | 是,pH 5 | 产量35.3 g/L;得率0.26 g/g;生产强度0.60 g/(L·h) | [ | |
解脂耶氏酵母PGC01003 | 敲除ACH1,表达ScPCK、YlSCS2 | 甘油 | 否,pH 3.4 | 产量110.7 g/L;得率0.53 g/g,理论得率的81.8% | [ | |
解脂耶氏酵母PGC91 | 表达TbFRD×2、EcFUM、YlMDH1、YlPYC、YlMDH2、YlFUM、SpMAE1,适应性进化 | 葡萄糖 | 否,pH 2.49 | 产量111.9 g/L;得率0.79 g/g;生产强度1.79 g/(L·h) | [ | |
解脂耶氏酵母PGC62 | 表达SpMAE1、TbFRD、YlSCS2、YlICL、YlMLS、YlYHM2 | 葡萄糖 | 是,pH 5.5 | 产量101.4 g/L;得率0.37 g/g;生产强度0.70 g/(L·h) | [ | |
解脂耶氏酵母PGC01003 | — | 甘油 | 是,pH 6.0 | 产量198.2 g/L;生产强度0.84 g/(L·h) | [ | |
解脂耶氏酵母PGC01003 | — | 粗甘油 | 是,pH 6.0 | 产量209.7 g/L;生产强度0.65 g/(L·h) | [ | |
解脂耶氏酵母PSA02004 | 代谢进化 | 葡萄糖 | 否 | 产量76.8 g/L | [ | |
东方伊萨酵母 | 东方伊萨酵母SD108 | 表达IoPYC、IoMDH、IoFUM、TbFRD | 葡萄糖 | 否 | 产量11.63 g/L;得率0.12 g/g;生产强度0.11 g/(L·h) | [ |
东方伊萨酵母SA | 表达SpMAE1、PaGDH、IoDAK,敲除ADH、GPD、g3473、g3837 | 葡萄糖和甘油 | 否,pH 3.0 | 产量109.5 g/L;得率0.65 g/g;生产强度0.54 g/(L·h) | [ |
1 | Barletta M, Aversa C, Ayyoob M, et al. Poly(butylene succinate) (PBS): materials, processing, and industrial applications[J]. Progress in Polymer Science, 2022, 132: 101579. |
2 | Kumar R, Basak B, Jeon B H. Sustainable production and purification of succinic acid: a review of membrane-integrated green approach[J]. Journal of Cleaner Production, 2020, 277: 123954. |
3 | 万屹东, 高有军, 马江锋. 生物法制备丁二酸的研究及产业化进展[J]. 生物加工过程, 2020, 18(5): 583-591, 630. |
Wan Y D, Gao Y J, Ma J F. Progress in industrialization on succinic acid production by fermentation[J]. Chinese Journal of Bioprocess Engineering, 2020, 18(5): 583-591, 630. | |
4 | Beauprez J J, De Mey M, Soetaert W K. Microbial succinic acid production: natural versus metabolic engineered producers[J]. Process Biochemistry, 2010, 45(7): 1103-1114. |
5 | Werpy T, Petersen G. Top value added chemicals from biomass: volume Ⅰ — results of screening for potential candidates from sugars and synthesis gas[J]. Office of Scientific and Technical Information, 2004: 69. |
6 | Bozell J J, Petersen G R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy's “Top 10” revisited[J]. Green Chemistry, 2010, 12(4): 539-554. |
7 | 谭天伟, 陈必强, 张会丽, 等. 加快推进绿色生物制造 助力实现“碳中和”[J]. 化工进展, 2021, 40(3): 1137-1141. |
Tan T W, Chen B Q, Zhang H L, et al. Accelerate promotion of green bio-manufacturing to help achieve “carbon neutrality”[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1137-1141. | |
8 | Song H, Lee S Y. Production of succinic acid by bacterial fermentation[J]. Enzyme and Microbial Technology, 2006, 39(3): 352-361. |
9 | 付嘉琦, 董曙馨, 李珺, 等. 强化硫胺素途径能增强工业酵母线粒体稳态[J]. 生物加工过程, 2023, 21(4): 439-451. |
Fu J Q, Dong S X, Li J, et al. Improvement of mitochondrial homeostasis in industrial yeast through enhancement of thiamine pathway[J]. Chinese Journal of Bioprocess Engineering, 2023, 21(4): 439-451. | |
10 | 李娇娇, 祁庆生. 琥珀酸的生物制造: 细菌还是酵母?[J]. 生物产业技术, 2016(1): 49-53. |
Li J J, Qi Q S. Bioproduction of succinic acid: bacteria or yeast? [J]. Biotechnology & Business, 2016(1): 49-53. | |
11 | Li C, Ong K L, Cui Z Y, et al. Promising advancement in fermentative succinic acid production by yeast hosts[J]. Journal of Hazardous Materials, 2021, 401: 123414. |
12 | Lin H, Bennett G N, San K Y. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield[J]. Metabolic Engineering, 2005, 7(2): 116-127. |
13 | Lin H, Bennett G N, San K Y. Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions[J]. Biotechnology and Bioengineering, 2005, 90(6): 775-779. |
14 | Raab A M, Lang C. Oxidative versus reductive succinic acid production in the yeast Saccharomyces cerevisiae [J]. Bioengineered Bugs, 2011, 2(2): 120-123. |
15 | Vemuri G N, Eiteman M A, Altman E. Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli [J]. Applied and Environmental Microbiology, 2002, 68(4): 1715-1727. |
16 | Cheng K K, Wang G Y, Zeng J, et al. Improved succinate production by metabolic engineering[J]. BioMed Research International, 2013, 2013: 538790. |
17 | Babaei M, Rueksomtawin Kildegaard K, Niaei A, et al. Engineering oleaginous yeast as the host for fermentative succinic acid production from glucose[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 361. |
18 | Vuoristo K S, Mars A E, Sanders J P M, et al. Metabolic engineering of TCA cycle for production of chemicals[J]. Trends in Biotechnology, 2016, 34(3): 191-197. |
19 | Escanciano I A, Wojtusik M, Esteban J, et al. Modeling the succinic acid bioprocess: a review[J]. Fermentation, 2022, 8(8): 368. |
20 | Zhou S F, Zhang Y L, Wei Z W, et al. Recent advances in metabolic engineering of microorganisms for the production of monomeric C3 and C4 chemical compounds[J]. Bioresource Technology, 2023, 377: 128973. |
21 | Jiang M, Ma J F, Wu M K, et al. Progress of succinic acid production from renewable resources: metabolic and fermentative strategies[J]. Bioresource Technology, 2017, 245(Pt B): 1710-1717. |
22 | Pateraki C, Patsalou M, Vlysidis A, et al. Actinobacillus succinogenes: advances on succinic acid production and prospects for development of integrated biorefineries[J]. Biochemical Engineering Journal, 2016, 112: 285-303. |
23 | Ahn J H, Seo H, Park W, et al. Enhanced succinic acid production by Mannheimia employing optimal malate dehydrogenase[J]. Nature Communications, 2020, 11: 1970 |
24 | Meynial-Salles I, Dorotyn S, Soucaille P. A new process for the continuous production of succinic acid from glucose at high yield, titer, and productivity[J]. Biotechnology and Bioengineering, 2008, 99(1): 129-135. |
25 | Narisetty V, Okibe M C, Amulya K, et al. Technological advancements in valorization of second generation (2G) feedstocks for bio-based succinic acid production[J]. Bioresource Technology, 2022, 360: 127513. |
26 | 王学明, 潘静宇, 吴静, 等. 调控大肠杆菌胞内ATP和NADH水平促进琥珀酸生产[J]. 生物工程学报, 2023, 39(8): 3236-3252. |
Wang X M, Pan J Y, Wu J, et al. Regulation of intracellular level of ATP and NADH in Escherichia coli to promote succinic acid production[J]. Chinese Journal of Biotechnology, 2023, 39(8): 3236-3252. | |
27 | Chung S C, Park J S, Yun J E, et al. Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum [J]. Metabolic Engineering, 2017, 40: 157-164. |
28 | Baptista S L, Costa C E, Cunha J T, et al. Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates[J]. Biotechnology Advances, 2021, 47: 107697. |
29 | Franco-Duarte R, Bessa D, Gonçalves F, et al. Genomic and transcriptomic analysis of Saccharomyces cerevisiae isolates with focus in succinic acid production[J]. FEMS Yeast Research, 2017, 17(6): fox057. |
30 | Kubo Y, Takagi H, Nakamori S. Effect of gene disruption of succinate dehydrogenase on succinate production in a sake yeast strain[J]. Journal of Bioscience and Bioengineering, 2000, 90(6): 619-624. |
31 | Raab A M, Gebhardt G, Bolotina N, et al. Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid[J]. Metabolic Engineering, 2010, 12(6): 518-525. |
32 | Pines O, Even-Ram S, Elnathan N, et al. The cytosolic pathway of l-malic acid synthesis in Saccharomyces cerevisiae: the role of fumarase[J]. Applied Microbiology and Biotechnology, 1996, 46(4): 393-399. |
33 | Muratsubaki H, Enomoto K. One of the fumarate reductase isoenzymes from Saccharomyces cerevisiae is encoded by the OSM1 gene[J]. Archives of Biochemistry and Biophysics, 1998, 352(2): 175-181 |
34 | Yan D J, Wang C X, Zhou J M, et al. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value[J]. Bioresource Technology, 2014, 156: 232-239. |
35 | Xiberras J, Klein M, de Hulster E, et al. Engineering Saccharomyces cerevisiae for succinic acid production from glycerol and carbon dioxide[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 566. |
36 | Malubhoy Z, Bahia F M, de Valk S C, et al. Carbon dioxide fixation via production of succinic acid from glycerol in engineered Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2022, 21(1): 102. |
37 | Ito Y, Hirasawa T, Shimizu H. Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling[J]. Bioscience, Biotechnology, and Biochemistry, 2014, 78(1): 151-159. |
38 | Lu H Z, Li F R, Sánchez B J, et al. A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism[J]. Nature Communications, 2019, 10: 3586. |
39 | Otero J M, Cimini D, Patil K R, et al. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory[J]. PLoS One, 2013, 8(1): e54144. |
40 | Agren R, Otero J M, Nielsen J. Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production[J]. Journal of Industrial Microbiology & Biotechnology, 2013, 40(7): 735-747. |
41 | 王凯峰, 丁颖, 纪晓俊. 微生物合成丙二酰辅酶A衍生物的代谢工程[J]. 生物加工过程, 2020, 18(1): 35-43. |
Wang K F, Ding Y, Ji X J. Metabolic engineering for microbial synthesis of malonyl-CoA derivatives[J]. Chinese Journal of Bioprocess Engineering, 2020, 18(1): 35-43. | |
42 | 王凯峰, 王金鹏, 韦萍, 等. 代谢工程改造解脂耶氏酵母生产脂肪酸及其衍生物[J]. 化工学报, 2021, 72(1): 351-365. |
Wang K F, Wang J P, Wei P, et al. Metabolic engineering of Yarrowia lipolytica to produce fatty acids and their derivatives[J]. CIESC Journal, 2021, 72(1): 351-365. | |
43 | Yuzbashev T V, Yuzbasheva E Y, Sobolevskaya T I, et al. Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica [J]. Biotechnology and Bioengineering, 2010, 107(4): 673-682. |
44 | 张耀, 邱晓曼, 陈程鹏, 等. 生物法制造丁二酸研究进展[J]. 化工学报, 2020, 71(5): 1964-1975. |
Zhang Y, Qiu X M, Chen C P, et al. Recent progress in microbial production of succinic acid[J]. CIESC Journal, 2020, 71(5): 1964-1975. | |
45 | Gao C J, Yang X F, Wang H M, et al. Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica [J]. Biotechnology for Biofuels, 2016, 9(1): 179. |
46 | 孙美莉, 王凯峰, 陆然, 等. 解脂耶氏酵母底盘细胞的工程改造及应用[J]. 合成生物学, 2023, 4(4): 779-807. |
Sun M L, Wang K F, Lu R, et al. Rewiring and application of Yarrowia lipolytica chassis cell[J]. Synthetic Biology Journal, 2023, 4(4): 779-807. | |
47 | Jost B, Holz M, Aurich A, et al. The influence of oxygen limitation for the production of succinic acid with recombinant strains of Yarrowia lipolytica [J]. Applied Microbiology and Biotechnology, 2015, 99(4): 1675-1686. |
48 | Cui Z Y, Gao C J, Li J J, et al. Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH[J]. Metabolic Engineering, 2017, 42: 126-133. |
49 | Cui Z Y, Zhong Y T, Sun Z J, et al. Reconfiguration of the reductive TCA cycle enables high-level succinic acid production by Yarrowia lipolytica [J]. Nature Communications, 2023, 14: 8480. |
50 | Jiang Z N, Cui Z Y, Zhu Z W, et al. Engineering of Yarrowia lipolytica transporters for high-efficient production of biobased succinic acid from glucose[J]. Biotechnology for Biofuels, 2021, 14(1): 145. |
51 | Yan Q, Zheng P, Dong J J, et al. A fibrous bed bioreactor to improve the productivity of succinic acid by Actinobacillus succinogenes [J]. Journal of Chemical Technology & Biotechnology, 2014, 89(11): 1760-1766. |
52 | Li C, Yang X F, Gao S, et al. High efficiency succinic acid production from glycerol via in situ fibrous bed bioreactor with an engineered Yarrowia lipolytica [J]. Bioresource Technology, 2017, 225: 9-16. |
53 | Li C, Gao S, Yang X F, et al. Green and sustainable succinic acid production from crude glycerol by engineered Yarrowia lipolytica via agricultural residue based in situ fibrous bed bioreactor[J]. Bioresource Technology, 2018, 249: 612-619. |
54 | Yuzbashev T V, Bondarenko P Y, Sobolevskaya T I, et al. Metabolic evolution and (13) C flux analysis of a succinate dehydrogenase deficient strain of Yarrowia lipolytica [J]. Biotechnology and Bioengineering, 2016, 113(11): 2425-2432. |
55 | Li C, Gao S, Li X T, et al. Efficient metabolic evolution of engineered Yarrowia lipolytica for succinic acid production using a glucose-based medium in an in situ fibrous bioreactor under low-pH condition[J]. Biotechnology for Biofuels, 2018, 11: 236. |
56 | Li C, Ong K L, Yang X F, et al. Bio-refinery of waste streams for green and efficient succinic acid production by engineered Yarrowia lipolytica without pH control[J]. Chemical Engineering Journal, 2019, 371: 804-812. |
57 | Li C, Yang X F, Gao S, et al. Hydrolysis of fruit and vegetable waste for efficient succinic acid production with engineered Yarrowia lipolytica [J]. Journal of Cleaner Production, 2018, 179: 151-159. |
58 | Li X T, Zhang M, Luo J W, et al. Efficient succinic acid production using a biochar-treated textile waste hydrolysate in an in situ fibrous bed bioreactor[J]. Biochemical Engineering Journal, 2019, 149: 107249. |
59 | Isono N, Hayakawa H, Usami A, et al. A comparative study of ethanol production by Issatchenkia orientalis strains under stress conditions[J]. Journal of Bioscience and Bioengineering, 2012, 113(1): 76-78. |
60 | Cao M F, Gao M R, Lopez-Garcia C L, et al. Centromeric DNA facilitates nonconventional yeast genetic engineering[J]. ACS Synthetic Biology, 2017, 6(8): 1545-1553. |
61 | Yoshida K, Poveda A, Pasero P. Time to be versatile: regulation of the replication timing program in budding yeast[J]. Journal of Molecular Biology, 2013, 425(23): 4696-4705. |
62 | Tran V G, Cao M F, Fatma Z, et al. Development of a CRISPR/Cas9-based tool for gene deletion in Issatchenkia orientalis [J]. mSphere, 2019, 4(3): e00345-e00319. |
63 | Cao M F, Fatma Z, Song X F, et al. A genetic toolbox for metabolic engineering of Issatchenkia orientalis [J]. Metabolic Engineering, 2020, 59: 87-97. |
64 | Bao Z H, Xiao H, Liang J, et al. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae [J]. ACS Synthetic Biology, 2015, 4(5): 585-594. |
65 | Redden H, Morse N, Alper H S. The synthetic biology toolbox for tuning gene expression in yeast[J]. FEMS Yeast Research, 2015, 15(1): 1-10. |
66 | Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high throughput capability[J]. PLoS One, 2008, 3(11): e3647. |
67 | Ma X Q, Liang H, Cui X Y, et al. A standard for near-scarless plasmid construction using reusable DNA parts[J]. Nature Communications, 2019, 10: 3294. |
68 | Shao Z Y, Zhao H, Zhao H M. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways[J]. Nucleic Acids Research, 2009, 37(2): e16. |
69 | Xiao H, Shao Z Y, Jiang Y, et al. Exploiting Issatchenkia orientalis SD108 for succinic acid production[J]. Microbial Cell Factories, 2014, 13: 121. |
70 | Tran V G, Mishra S, Bhagwat S S, et al. An end-to-end pipeline for succinic acid production at an industrially relevant scale using Issatchenkia orientalis [J]. Nature Communications, 2023, 14: 6152. |
71 | Douglass A P, Offei B, Braun-Galleani S, et al. Population genomics shows no distinction between pathogenic Candida krusei and environmental Pichia kudriavzevii: one species, four names[J]. PLoS Pathogens, 2018, 14(7): e1007138. |
72 | Xi Y Y, Zhan T, Xu H T, et al. Characterization of JEN family carboxylate transporters from the acid-tolerant yeast Pichia kudriavzevii and their applications in succinic acid production[J]. Microbial Biotechnology, 2021, 14(3): 1130-1147. |
[1] | Shupeng WANG, Jianjun DU, Yao YAO, Jiangli FAN, Xiaojun PENG. Mitochondria-targeted rhodamine photosensitizers for tumor fluorescence imaging [J]. CIESC Journal, 2024, 75(4): 1679-1686. |
[2] | Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production [J]. CIESC Journal, 2023, 74(5): 2111-2122. |
[3] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[4] | Caifeng LI, Xiao WANG, Gangjian LI, Junzhang LIN, Weidong WANG, Qinglin SHU, Yanbin CAO, Meng XIAO. Synergistic relationship between hydrocarbon degrading and emulsifying strain SL-1 and endogenous bacteria during oil displacement [J]. CIESC Journal, 2022, 73(9): 4095-4102. |
[5] | Xue LIU, Lijuan ZHANG, Guangrong ZHAO. Commensalistic Escherichia coli coculture for biosynthesis of daidzein [J]. CIESC Journal, 2022, 73(9): 4015-4024. |
[6] | Yi SUN, Teng ZHANG, Bo LYU, Chun LI. Improvement for fine regulation of microbial cell factory by intracellular biosensors [J]. CIESC Journal, 2022, 73(2): 521-534. |
[7] | Jingnan WANG, Jian PANG, Lei QIN, Chao GUO, Bo LYU, Chun LI, Chao WANG. Breeding and modification strategies of butenyl-spinosyn high-yield strains [J]. CIESC Journal, 2022, 73(2): 566-576. |
[8] | Xiaosong HOU, Chenxing LIU, Ailing REN, Bin GUO, Yuanming GUO. Study on purification of toluene waste gas by ultrasonic atomization/surfactants-enhanced absorption coupled with biological scrubbing [J]. CIESC Journal, 2022, 73(10): 4692-4706. |
[9] | Xinhui WANG, Ying WANG, Mingdong YAO, Wenhai XIAO. Research progress of vitamin A biosynthesis [J]. CIESC Journal, 2022, 73(10): 4311-4323. |
[10] | Wei SONG, Jinhui WANG, Guipeng HU, Xiulai CHEN, Liming LIU, Jing WU. Cascade catalysis for the synthesis of (R)-β-tyrosine [J]. CIESC Journal, 2022, 73(1): 352-361. |
[11] | Wulin ZHOU, Huifang GAO, Yuling WU, Xian ZHANG, Meijuan XU, Taowei YANG, Minglong SHAO, Zhiming RAO. Engineering of Saccharomyces cerevisiae for biosynthesis of campesterol [J]. CIESC Journal, 2021, 72(8): 4314-4324. |
[12] | MAO Jinzhu, XIAO Shuling, YANG Zhichun, WANG Xiaoyu, ZHANG Shi, CHEN Junhong, XIE Jisheng, CHEN Fude, HUANG Zinuo, FENG Tianyu, ZHANG Aihui, FANG Baishan. Application of synthetic biology in pesticides residues detection [J]. CIESC Journal, 2021, 72(5): 2413-2425. |
[13] | WANG Xin, ZHAO Peng, LI Qingyang, TIAN Pingfang. Research advances in semiconductor synthetic biology [J]. CIESC Journal, 2021, 72(5): 2426-2435. |
[14] | Nan SU, Yinan WU, Yinyee TAN, Lihua JIN, Chong ZHANG, Aikawa SHIMPEI, Hasunuma TOMOHISA, Kondo AKIHIKO, Xinhui XING. Comparative omics study of Spirulinaplatensis mutants based on ARTP mutagenesis breeding system [J]. CIESC Journal, 2021, 72(12): 6298-6310. |
[15] | Yukun ZHENG, Qing SUN, Zhen CHEN, Huimin YU. Progress for chemicals production via microbial cell factory: selecting several small molecules and macromolecular products as examples [J]. CIESC Journal, 2021, 72(12): 6109-6121. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||