CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1414-1428.DOI: 10.11949/0438-1157.20231272
• Reviews and monographs • Previous Articles Next Articles
Ting CHENG1,2(), Weizhou JIAO1(), Youzhi LIU1
Received:
2023-12-04
Revised:
2024-02-05
Online:
2024-06-06
Published:
2024-04-25
Contact:
Weizhou JIAO
通讯作者:
焦纬洲
作者简介:
程婷(1989—),女,博士研究生,讲师,tingchengscdx@163.com
基金资助:
CLC Number:
Ting CHENG, Weizhou JIAO, Youzhi LIU. Application and research progress of functional packings in high-gravity rotating packed bed[J]. CIESC Journal, 2024, 75(4): 1414-1428.
程婷, 焦纬洲, 刘有智. 功能性填料在超重力旋转填料床中的应用和研究进展[J]. 化工学报, 2024, 75(4): 1414-1428.
Add to citation manager EndNote|Ris|BibTeX
填料类型 | 载体材料 | 优点 | 缺点 | 应用体系 |
---|---|---|---|---|
碳基填料 | 活性炭[ | 高比表面积;表面官能团丰富;强吸附与催化性 | 再生较困难 | 有机废水处理体系 |
无机填料 | 分子筛[ | 可调疏水性;高抗湿性;强吸附与催化性 | 原料成本较高 | 酸催化反应体系 有机废水处理体系 |
有机填料 | 树脂[ | 高化学稳定性;强吸附性 | 存在泄漏风险 | 重金属废水处理体系 |
金属基填料 | 氧化铝[ | 高比表面积;强吸附与催化性 | 热稳定性较差,较高温度;易烧结 | 有机废水处理体系 |
铁基材料[ | 强度适中;可形成复合型填料 | 分散性较差,易团聚;比表面积较小 |
Table 1 Types and characteristics of random packings in RPB
填料类型 | 载体材料 | 优点 | 缺点 | 应用体系 |
---|---|---|---|---|
碳基填料 | 活性炭[ | 高比表面积;表面官能团丰富;强吸附与催化性 | 再生较困难 | 有机废水处理体系 |
无机填料 | 分子筛[ | 可调疏水性;高抗湿性;强吸附与催化性 | 原料成本较高 | 酸催化反应体系 有机废水处理体系 |
有机填料 | 树脂[ | 高化学稳定性;强吸附性 | 存在泄漏风险 | 重金属废水处理体系 |
金属基填料 | 氧化铝[ | 高比表面积;强吸附与催化性 | 热稳定性较差,较高温度;易烧结 | 有机废水处理体系 |
铁基材料[ | 强度适中;可形成复合型填料 | 分散性较差,易团聚;比表面积较小 |
功能性填料 | 一般填料 | 气液体系 | ΔKLa |
---|---|---|---|
γ-Al2O3[ | 无孔球形填料 | CO2-NaOH | +50.0% |
疏水改性泡沫镍[ | 泡沫镍 | CO2-NaOH | +28.0% |
氧化铝包覆丝网[ | 丝网 | CO2-NaOH | +45.7% |
Fe-Mn-Cu/γ-Al2O3[ | 玻璃珠 | O3-H2O | +56.07% |
3D打印填料[ | 丝网 | SO2-NaOH | 100~300倍 |
3D打印水滴状纤维网状填料(PMP-D)[ | 丝网 | VOCs-丙酮-硅油 | +50.0% |
Table 2 The results of gas-liquid mass transfer enhanced by functional packings in RPB compared with general packings
功能性填料 | 一般填料 | 气液体系 | ΔKLa |
---|---|---|---|
γ-Al2O3[ | 无孔球形填料 | CO2-NaOH | +50.0% |
疏水改性泡沫镍[ | 泡沫镍 | CO2-NaOH | +28.0% |
氧化铝包覆丝网[ | 丝网 | CO2-NaOH | +45.7% |
Fe-Mn-Cu/γ-Al2O3[ | 玻璃珠 | O3-H2O | +56.07% |
3D打印填料[ | 丝网 | SO2-NaOH | 100~300倍 |
3D打印水滴状纤维网状填料(PMP-D)[ | 丝网 | VOCs-丙酮-硅油 | +50.0% |
1 | 刘有智. 谈过程强化技术促进化学工业转型升级和可持续发展[J]. 化工进展, 2018, 37(4): 1203-1211. |
Liu Y Z. Discussion on process intensification technology to promote the transformation, upgrading and sustainable development of chemical industry[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1203-1211. | |
2 | 国家自然科学基金委员会, 中国科学院. 中国学科发展战略·化工过程强化[M]. 北京: 科学出版社, 2018. |
National Natural Science Foundation of China, Chinese Academy of Sciences. Chinese Discipline Development Strategy—Chemical Process Intensification[M]. Beijing: Science Press, 2018. | |
3 | 刘有智. 超重力化工过程与技术[M]. 北京: 国防工业出版社, 2009. |
Liu Y Z. Chemical Engineering Process and Technology in High Gravity[M]. Beijing: National Defense Industry Press, 2009. | |
4 | Jiao W Z, Luo S, He Z, et al. Applications of high gravity technologies for wastewater treatment: a review[J]. Chemical Engineering Journal, 2017, 313: 912-927. |
5 | Wang Z H, Yang T, Liu Z X, et al. Mass transfer in a rotating packed bed: a critical review[J]. Chemical Engineering and Processing: Process Intensification, 2019, 139: 78-94. |
6 | Wenzel D, Górak A. Review and analysis of micromixing in rotating packed beds[J]. Chemical Engineering Journal, 2018, 345: 492-506. |
7 | 刁金祥, 刘有智, 焦纬洲, 等. 超重力旋转填料床应用研究进展[J]. 化工生产与技术, 2006, 13(1): 48-51. |
Diao J X, Liu Y Z, Jiao W Z, et al. Research progress on the applications of high-gravity rotating packed bed[J]. Chemical Production and Technology, 2006, 13(1): 48-51. | |
8 | Lin C C, Zhong Y H. Degradation of Orange G in water by nano-Cu0/H2O2 process with nano-Cu0 synthesized in a rotating packed bed with blade packings[J]. Materials Chemistry and Physics, 2023, 295: 127097. |
9 | Wang X S, Li Y J, Qi T T, et al. Preparation of ZSM-5 zeolites by sodium-free method in rotating packed bed[J]. Chemical Engineering and Processing: Process Intensification, 2023, 189: 109398. |
10 | Guo D, Qi G S, Chen D, et al. Removal of nitric oxide from simulated flue gas using aqueous persulfate with activation of ferrous ethylenediaminetetraacetate in the rotating packed bed[J]. Frontiers of Chemical Science and Engineering, 2023, 17(4): 460-469. |
11 | Chen T L, Hong C Y, Chen Y H, et al. Enhancing NO x removal in a high-gravity rotating packed bed with gaseous ClO2 oxidation-absorption: kinetic, mass transfer, and cost analysis[J]. Chemical Engineering Journal, 2023, 469: 144072. |
12 | Han R, Fang X H, Song Y H, et al. Study on the oxidation of ammonium sulfite by ozone in a rotating packed bed[J]. Chemical Engineering and Processing: Process Intensification, 2022, 173(13): 108820. |
13 | Pyka T, Brunert M, Koop J, et al. Novel liquid distributor concept for rotating packed beds[J]. Industrial & Engineering Chemistry Research, 2023, 62(14): 5984-5994. |
14 | Cheng S Y, Qi G S, Wu L M, et al. Deep purification of low concentration fine particles in a cross flow rotating packed bed[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 143: 104723. |
15 | 张亮亮, 付纪文, 罗勇, 等. 面向海洋工程的超重力过程强化技术及应用[J]. 化工学报, 2020, 71(1): 1-15. |
Zhang L L, Fu J W, Luo Y, et al. Higee process intensification technology and application for oceaneering[J]. CIESC Journal, 2020, 71(1): 1-15. | |
16 | Miao F M, Zhang S, Sun X L, et al. Degradation of phenol with Mn-CoO x /γ-Al2O3 catalytic ozonation enhanced by high gravity technology[J]. Chemical Engineering Science, 2023, 280: 119036. |
17 | Wen Z N, Li Y B, Liu W, et al. Flow behavior in a rotating packed bed reactor with single-layer mesh: effect of fiber cross-sectional shape[J]. Chemical Engineering Science, 2022, 248(22): 117147. |
18 | Wen Z N, Li Y B, Xu H Z, et al. Desulfurization performance in a HiGee reactor with packing containing different fiber cross-sectional shapes[J]. Separation and Purification Technology, 2022, 287: 120536. |
19 | Chen Y S, Lin F Y, Lin C C, et al. Packing characteristics for mass transfer in a rotating packed bed[J]. Industrial & Engineering Chemistry Research, 2006, 45(20): 6846-6853. |
20 | 赵志强. 规整填料旋转填充床压降特性及传质性能研究[D]. 北京: 北京化工大学, 2014. |
Zhao Z Q. Studies on gas pressure drop and mass transfer performance in a rotating packed bed with structured packing[D]. Beijing: Beijing University of Chemical Technology, 2014. | |
21 | 刘洋, 焦纬洲, 刘有智. 超重力强化处理硝基苯类废水的研究进展[J]. 含能材料, 2022, 30(10): 1069-1080. |
Liu Y, Jiao W Z, Liu Y Z. Research progress of high gravity enhanced nitrobenzene wastewater degradation[J]. Chinese Journal of Energetic Materials, 2022, 30(10): 1069-1080. | |
22 | 苗富铭, 任高妙, 武文莉, 等. 超重力强化O3/Fe(Ⅱ)氧化降解DNT实际废水[J]. 含能材料, 2022, 30(10): 995-1003. |
Miao F M, Ren G M, Wu W L, et al. Degradation of actual wastewater containing dinitrtoluene with O 3 / F e ( Ⅱ ) oxidation process enhanced by high gravity technology[J]. Chinese Journal of Energetic Materials, 2022, 30(10): 995-1003. | |
23 | Heidarinejad Z, Dehghani M H, Heidari M, et al. Methods for preparation and activation of activated carbon: a review[J]. Environmental Chemistry Letters, 2020, 18(2): 393-415. |
24 | Neolaka Y A B, Riwu A A P, Aigbe U O, et al. Potential of activated carbon from various sources as a low-cost adsorbent to remove heavy metals and synthetic dyes[J]. Results in Chemistry, 2023, 5: 100711. |
25 | Bhatnagar A, Hogland W, Marques M, et al. An overview of the modification methods of activated carbon for its water treatment applications[J]. Chemical Engineering Journal, 2013, 219: 499-511. |
26 | 郭芳. 超重力场下活性炭吸附法处理间苯二酚废水工艺研究[D]. 太原: 中北大学, 2018. |
Guo F. Study on adsorption process of resorcinol on activated carbon under high gravity[D]. Taiyuan: North University of China, 2018. | |
27 | Zhang J W, Shao S J, Ding X, et al. Removal of phenol from wastewater by high-gravity intensified heterogeneous catalytic ozonation with activated carbon[J]. Environmental Science and Pollution Research, 2022, 29(23): 34830-34840. |
28 | Zhang J W, Guo Q, Wu W L, et al. Preparation of Fe-MnO x /AC by high gravity method for heterogeneous catalytic ozonation of phenolic wastewater[J]. Chemical Engineering Science, 2022, 255: 117667. |
29 | Bensafi B, Chouat N, Djafri F. The universal zeolite ZSM-5: structure and synthesis strategies. A review[J]. Coordination Chemistry Reviews, 2023, 496: 215397. |
30 | Wang X F, Liu C F, He L C, et al. Unveiling geometric and electronic effects of Pt species on water-tolerant Pt/ZSM-5 catalyst for propane oxidation[J]. Applied Catalysis A: General, 2023, 655: 119108. |
31 | Li Z X, Jing J X, Gao K C, et al. Degradation of nitrobenzene by high-gravity intensified heterogeneous catalytic ozonation with Mn-Fe/ZSM-5 catalysts[J]. Chemical Engineering and Processing: Process Intensification, 2021, 169: 108642. |
32 | Yuan J L, Li C H, Wang S S, et al. Methods and characteristics of drug extraction from ion-exchange-resin-mediated preparations: influences, thermodynamics, and kinetics[J]. Polymers, 2023, 15(5): 1191. |
33 | Pan Z X, Li Z Q, Zeng B Z, et al. Enhanced denitrification performance of granular sludge for the treatment of waste brine from ion exchange resin process[J]. Journal of Environmental Management, 2023, 344: 118473. |
34 | Luo L L, Li F S, Zhang H C, et al. Efficient removal of alkali and alkaline earth metals from biodiesel using ion-exchange resin: performance and mechanism[J]. Separation and Purification Technology, 2023, 323: 124485. |
35 | Rengaraj S, Yeon K H, Moon S H. Removal of chromium from water and wastewater by ion exchange resins[J]. Journal of Hazardous Materials, 2001, 87(1/2/3): 273-287. |
36 | Harmer M A, Sun Q. Solid acid catalysis using ion-exchange resins[J]. Applied Catalysis A: General, 2001, 221(1/2): 45-62. |
37 | 王政为. 超重力场下732(钠型)树脂对Pb(Ⅱ)吸附特性研究[D]. 太原: 中北大学, 2021. |
Wang Z W. Adsorption behavior of lead ions on 732(sodium type) resin in high gravity field[D]. Taiyuan: North University of China, 2021. | |
38 | 宋尧. 超重力强化D201树脂改性及除Cr(Ⅵ)性能研究[D]. 太原: 中北大学, 2021. |
Song Y. Study on modification of D201 resin strengthened by high gravity and its Cr(Ⅵ) removal performance[D]. Taiyuan: North University of China, 2021. | |
39 | Song Y, Li Z X, Shao S J, et al. High-gravity intensified preparation of D201 resin-hydrated iron oxide nanocomposites for Cr(Ⅵ) removal[J]. Advanced Powder Technology, 2021, 32(5): 1584-1593. |
40 | Zhao P L, Ma S H, Wang X H, et al. Properties and mechanism of mullite whisker toughened ceramics[J]. Ceramics International, 2023, 49(7): 10238-10248. |
41 | Peng Q, Zhong W L, Liu K, et al. Cobalt-aluminum spinel supported on modified γ - a l u m i n a for peroxymonosulfate activation: Si-Al ratio of support to optimize performance and reusability[J]. Journal of Environmental Management, 2023, 345: 118905. |
42 | Wang P T, Du Y, Tao Y T, et al. Bright persistent luminescence from Cu+ activated Al2O3-CaO photochromic glasses[J]. Ceramics International, 2023, 49(7): 11647-11654. |
43 | Zhou G H, Liu Y, Shi Y, et al. Slurry preparation and stereolithography for activated alumina catalyst carrier[J]. Journal of Inorganic Materials, 2022, 37(3): 297-302. |
44 | Zhang Z R, Hicks R W, Pauly T R, et al. Mesostructured forms of γ-Al2O3 [J]. Journal of the American Chemical Society, 2002, 124(8): 1592-1593. |
45 | Ma C, Wen Z N, Sun B C, et al. Mass transfer intensification mechanism of Al2O3 sphere packing in a rotating packed bed[J]. Chemical Engineering Journal, 2022, 428: 130953. |
46 | Du L, Li P Y, Gao W Q, et al. Enhancement degradation of formaldehyde by MgO/γ-Al2O3 catalyzed O3/H2O2 in a rotating packed bed[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 118: 29-37. |
47 | Shao S J, Li Z X, Gao K C, et al. Preparation of Cu-MnO x /γ-Al2O3 by high gravity-assisted impregnation method for heterogeneous catalytic ozonation of nitrobenzene[J]. Separation and Purification Technology, 2022, 280: 119896. |
48 | Jiao W Z, Wei X Y, Shao S J, et al. Catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-Mn-Cu/γ-Al2O3 in a rotating packed bed[J]. Chinese Journal of Chemical Engineering, 2022, 45: 133-142. |
49 | Guo B R, Huo H H, Zhuang Q X, et al. Iron oxyhydroxide: structure and applications in electrocatalytic oxygen evolution reaction[J]. Advanced Functional Materials, 2023, 33(25): 2300557. |
50 | Ju J H, Chen Y T, Liu Z Q, et al. Modification and application of Fe3O4 nanozymes in analytical chemistry: a review[J]. Chinese Chemical Letters, 2023, 34(5): 107820. |
51 | Lin C C, Lin Y S, Ho J M. Adsorption of Reactive Red 2 from aqueous solutions using Fe3O4 nanoparticles prepared by co-precipitation in a rotating packed bed[J]. Journal of Alloys and Compounds, 2016, 666: 153-158. |
52 | 陈继学. 超重力强化铁基催化剂活化过硫酸盐降解靛蓝胭脂红染料废水[D]. 太原: 中北大学, 2022. |
Chen J X. Degradation of indigo carmine wastewater by activated persulfate over iron-based catalyst enhanced by high gravity[D]. Taiyuan: North University of China, 2022. | |
53 | 李鹏阳. 超重力法制备FeOOH催化臭氧降解硝基苯废水[D]. 太原: 中北大学, 2021. |
Li P Y. Preparation of FeOOH and catalytic ozonation of nitrobenzene wastewater by high gravity method[D]. Taiyuan: North University of China, 2021. | |
54 | Jing J X, Jiao W Z, Li Z X, et al. High-gravity intensified iron-carbon micro-electrolysis for degradation of dinitrotoluene[J]. Frontiers of Chemical Science and Engineering, 2022, 16(11): 1595-1605. |
55 | Sang L, Luo Y, Chu G W, et al. A three-zone mass transfer model for a rotating packed bed[J]. AIChE Journal, 2019, 65(6): e16595. |
56 | 刘易. 规整填料旋转填充床流体流动与传质性能研究——数值模拟与实验验证[D]. 北京: 北京化工大学, 2019. |
Liu Y. Fluid flow and mass transfer performance of a rotating packed bed reactor with structured packing: numerical simulation and experimental validation[D]. Beijing: Beijing University of Chemical Technology, 2019. | |
57 | Luo Y, Luo J Z, Chu G W, et al. Investigation of effective interfacial area in a rotating packed bed with structured stainless steel wire mesh packing[J]. Chemical Engineering Science, 2017, 170: 347-354. |
58 | 苏梦军. 丝网填料表面微纳结构构筑及其对液体流动和气液传质的影响[D]. 北京: 北京化工大学, 2020. |
Su M J. Construction of micro-nano structure on the surface of screen packing and its influence on liquid flow and gas-liquid mass transfer[D]. Beijing: Beijing University of Chemical Technology, 2020. | |
59 | Zhang J P, Liu W, Luo Y, et al. Enhancing liquid droplet breakup by hydrophobic wire mesh: visual study and application in a rotating packed bed[J]. Chemical Engineering Science, 2019, 209: 115180. |
60 | Su M J, Luo Y, Chu G W, et al. Dispersion behaviors of droplet impacting on wire mesh and process intensification by surface micro/nano-structure[J]. Chemical Engineering Science, 2020, 219: 115593. |
61 | Su M J, Le Y, Chu G W, et al. Intensification of droplet dispersion by using multilayer wire mesh and its application in a rotating packed bed[J]. Industrial & Engineering Chemistry Research, 2020, 59(8): 3584-3592. |
62 | Lu Y Z, Liu W, Xu Y C, et al. Initial liquid dispersion and mass transfer performance in a rotating packed bed[J]. Chemical Engineering and Processing: Process Intensification, 2019, 140: 136-141. |
63 | 张文洁. 泡沫填料旋转填充床微观混合性能研究[D]. 北京: 北京化工大学, 2015. |
Zhang W J. Micromixing efficiency of a rotating packed bed with foam packings[D]. Beijing: Beijing University of Chemical Technology, 2014. | |
64 | Zheng X H, Chu G W, Kong D J, et al. Mass transfer intensification in a rotating packed bed with surface-modified nickel foam packing[J]. Chemical Engineering Journal, 2016, 285: 236-242. |
65 | Han Y, Gao Y K, Wang B J, et al. Highly efficient monolithic catalyst with excellent adhesion of SiO2 coating for catalytic hydrogenation in the rotating packed bed reactor[J]. Industrial & Engineering Chemistry Research, 2022, 61(50): 18318-18326. |
66 | Liao H L, Wang B J, Liu Y Z, et al. Preparation of Pd/γ-Al2O3/nickel foam monolithic catalyst and its performance for selective hydrogenation in a rotating packed bed reactor[J]. Chinese Journal of Chemical Engineering, 2022, 41: 311-319. |
67 | Feng M N, Ren L, Wang Z Y, et al. Recent research progress of foam metals welding: a review[J]. The International Journal of Advanced Manufacturing Technology, 2023, 127(7): 3135-3156. |
68 | 赵洋. 金属改性泡沫陶瓷催化臭氧氧化水中苯酚的研究[D]. 大连: 大连理工大学, 2022. |
Zhao Y. Study on catalytic ozonation of phenol in water by metal modified foam ceramics[D]. Dalian: Dalian University of Technology, 2022. | |
69 | 张文洁, 初广文, 罗勇, 等. 泡沫陶瓷填料旋转填充床微观混合性能[J]. 化工学报, 2014, 65(8): 2976-2980. |
Zhang W J, Chu G W, Luo Y, et al. Micromixing in rotating packed bed with ceramic foam packing[J]. CIESC Journal, 2014, 65(8): 2976-2980. | |
70 | Gong F Y, Cheng X J, Fang B J, et al. Prospect of 3D printing technologies in maintenance of asphalt pavement cracks and potholes[J]. Journal of cleaner Production, 2023, 397: 136551. |
71 | Wang S S, Chen X J, Han X L, et al. A review of 3D printing technology in pharmaceutics: technology and applications, now and future[J]. Pharmaceutics, 2023, 15(2): 416. |
72 | 梁鹏飞. 旋转填料床用3D打印新型规整填料的研发及性能研究[D]. 太原: 中北大学, 2018. |
Liang P F. Research and development of 3D printing new type packing for rotating packed bed[D]. Taiyuan: North University of China, 2018. | |
73 | Yuan Z G, Wang Y X, Liu Y Z, et al. Research and development of advanced structured packing in a rotating packed bed[J]. Chinese Journal of Chemical Engineering, 2022, 49: 178-186. |
74 | Wen Z N, Wu W, Luo Y, et al. Novel wire mesh packing with controllable cross-sectional area in a rotating packed bed: mass transfer studies[J]. Industrial & Engineering Chemistry Research, 2020, 59(36): 16043-16051. |
75 | Lukin I, Pietzka L, Wingartz I, et al. Aroma absorption in rapeseed oil using rotating packed bed[J]. Flavour and Fragrance Journal, 2020, 36(1): 137-147. |
76 | Ma C, Su M J, Luo Y, et al. Wetting behavior of the stainless steel wire mesh with Al2O3 coatings and mass transfer intensification in a rotating packed bed[J]. Industrial & Engineering Chemistry Research, 2020, 59(3): 1374-1382. |
77 | Li Y B, Liu W, Zhang X, et al. Enhancement of devolatilization performance in a rotating packed bed with different packing structures[J]. Separation and Purification Technology, 2021, 278: 119527. |
78 | Liu Y Z, Li Z H, Chu G W, et al. Liquid-solid mass transfer in a rotating packed bed reactor with structured foam packing[J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2507-2512. |
79 | Liu Y, Wu W, Luo Y, et al. CFD simulation and high-speed photography of liquid flow in the outer cavity zone of a rotating packed bed reactor[J]. Industrial & Engineering Chemistry Research, 2019, 58(13): 5280-5290. |
80 | Chen W C, Fan Y W, Zhang L L, et al. Computational fluid dynamic simulation of gas-liquid flow in rotating packed bed: a review[J]. Chinese Journal of Chemical Engineering, 2022, 41(4): 85-108. |
81 | Liu Z H, Xu H Z, Chen W C, et al. Dispersion characteristics of liquid jet impacting on the rotating single-layer wire mesh with different surface wettabilities[J]. Chemical Engineering Science, 2022, 251: 117495. |
82 | Liao H L, Ouyang Y, Zhang J P, et al. Numerical studies of a liquid droplet impacting on single-layer hydrophilic and hydrophobic wire meshes[J]. Industrial & Engineering Chemistry Research, 2022, 61(20): 7154-7162. |
[1] | Fangtao JIANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN, Jing ZHANG. Efficient synthesis of fluoroethylene carbonate via phase transfer catalysis using [bmim][BF4] [J]. CIESC Journal, 2024, 75(4): 1543-1551. |
[2] | Binbin FENG, Mingjia LU, Zhihong HUANG, Yiwen CHANG, Zhiming CUI. Application and optimization of carbon supports in proton exchange membrane fuel cells [J]. CIESC Journal, 2024, 75(4): 1469-1484. |
[3] | Anran XU, Kai LIU, Na WANG, Zhenyu ZHAO, Hong LI, Xin GAO. Strong wave-absorbing catalyst cooperates with microwave energy to enhance fructose dehydration to produce 5-hydroxymethylfurfural [J]. CIESC Journal, 2024, 75(4): 1565-1577. |
[4] | Yaqing ZANG, Yijun ZHANG, Jinzhao WANG, Qian WANG, Dianqing LI, Junting FENG, Xue DUAN. Low energy consumption preparation of anhydrous calcium chloride from hydrated calcium chloride based on reaction coupling [J]. CIESC Journal, 2024, 75(4): 1508-1518. |
[5] | Xiao DONG, Zhishan BAI, Xiaoyong YANG, Wei YIN, Ningpu LIU, Qifan YU. Research and industrial application of coupled impurity removal technology in CHPPO process oxidation liquids [J]. CIESC Journal, 2024, 75(4): 1630-1641. |
[6] | Juan WANG, Xiuming LI, Weitao SHAO, Xu DING, Ying HUO, Lianchao FU, Yunyu BAI, Di LI. Numerical simulation of flow and mass transfer characteristics in porous plate bubbling column reactor [J]. CIESC Journal, 2024, 75(3): 801-814. |
[7] | Shihao LI, Zhenhua WU, Zhanfeng ZHAO, Hong WU, Dong YANG, Jiafu SHI, Zhongyi JIANG. Electron transfer, proton transfer and molecule transfer in chemical processes [J]. CIESC Journal, 2024, 75(3): 1052-1064. |
[8] | Jiaqi WANG, Haoqi WEI, Ajing GOU, Jiaxing LIU, Xinlin ZHOU, Kun GE. Study on the formation mechanism of CO2 hydrate under the action of nanoparticles [J]. CIESC Journal, 2024, 75(3): 956-966. |
[9] | Xingyu GAI, Yuxue YUE, Chunhua YANG, Zilong ZHANG, Tianzi CAI, Haifeng ZHANG, Bolin WANG, Xiaonian LI. Carbon supported Cs- and Cu-based catalysts for gas-phase dehydrochlorination of 1,1,2-trichloroethane [J]. CIESC Journal, 2024, 75(2): 575-583. |
[10] | Wenjun LI, Zhongyang ZHAO, Zhen NI, Can ZHOU, Chenghang ZHENG, Xiang GAO. CFD numerical simulation of wet flue gas desulfurization:performance improvement based on gas-liquid mass transfer enhancement [J]. CIESC Journal, 2024, 75(2): 505-519. |
[11] | Ruohan ZHAO, Mengmeng HUANG, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Flow and mass transfer study of CO2 absorption by nanofluid in T-shaped microchannels [J]. CIESC Journal, 2024, 75(1): 221-230. |
[12] | Xiangjun MENG, Yingxi HUA, Changjin ZHANG, Chi ZHANG, Linrui YANG, Ruoxi YANG, Jianyi LIU, Chunjian XU. Preparation and purification of 6N electronic-grade deuterium gas [J]. CIESC Journal, 2024, 75(1): 377-390. |
[13] | Yizhou CUI, Chengxiang LI, Linxiao ZHAI, Shuyu LIU, Xiaogang SHI, Jinsen GAO, Xingying LAN. Comparative study on the flow and mass transfer characteristics of sub-millimeter bubbles and conventional bubbles in gas-liquid two-phase flow [J]. CIESC Journal, 2024, 75(1): 197-210. |
[14] | Qi LIU, Zikang CHEN, Yu PIAO, Peng XIAO, Yafen GE, Yanjun GONG. Zeolite catalysts for catalytic cracking of hydrocarbon to increase light olefins selectivity [J]. CIESC Journal, 2024, 75(1): 120-137. |
[15] | Guoyi XIAN, Lifang CHEN, Zhiwen QI. DFT-based study of liquid-phase Beckmann rearrangement mechanism of cyclohexanone oxime [J]. CIESC Journal, 2024, 75(1): 302-311. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||