CIESC Journal ›› 2024, Vol. 75 ›› Issue (5): 1920-1928.DOI: 10.11949/0438-1157.20240081
• Separation engineering • Previous Articles Next Articles
Wenyan ZHANG1(), Hao LIU1, Weilong SONG1, Pin ZHAO1(), Xinhua WANG1,2
Received:
2024-01-07
Revised:
2024-02-04
Online:
2024-06-25
Published:
2024-05-25
Contact:
Pin ZHAO
张文焱1(), 刘浩1, 宋伟龙1, 赵频1(), 王新华1,2
通讯作者:
赵频
作者简介:
张文焱(1998—),男,硕士研究生,1162055245@qq.com
基金资助:
CLC Number:
Wenyan ZHANG, Hao LIU, Weilong SONG, Pin ZHAO, Xinhua WANG. Construction and performance evaluation of TFN-FO membranes incorporated with UiO-66 nanoparticles of different sizes[J]. CIESC Journal, 2024, 75(5): 1920-1928.
张文焱, 刘浩, 宋伟龙, 赵频, 王新华. 不同粒径UiO-66混掺改性TFN-FO膜的构建及性能评价[J]. 化工学报, 2024, 75(5): 1920-1928.
Add to citation manager EndNote|Ris|BibTeX
膜 | C含量 | N含量 | O含量 | Zr含量 | O/N原子比 | O/N原子比① | 交联度/% |
---|---|---|---|---|---|---|---|
TFC | 74.45 | 10.80 | 14.71 | 0 | 1.36 | 1.36 | 54 |
TFN-50 | 73.19 | 10.08 | 16.28 | 0.42 | 1.60 | 1.39 | 51 |
TFN-100 | 72.72 | 10.15 | 16.68 | 0.40 | 1.64 | 1.43 | 47 |
TFN-150 | 73.23 | 9.80 | 16.35 | 0.35 | 1.70 | 1.47 | 43 |
Table 1 XPS of TFC and TFN membranes
膜 | C含量 | N含量 | O含量 | Zr含量 | O/N原子比 | O/N原子比① | 交联度/% |
---|---|---|---|---|---|---|---|
TFC | 74.45 | 10.80 | 14.71 | 0 | 1.36 | 1.36 | 54 |
TFN-50 | 73.19 | 10.08 | 16.28 | 0.42 | 1.60 | 1.39 | 51 |
TFN-100 | 72.72 | 10.15 | 16.68 | 0.40 | 1.64 | 1.43 | 47 |
TFN-150 | 73.23 | 9.80 | 16.35 | 0.35 | 1.70 | 1.47 | 43 |
1 | Cath T, Childress A, Elimelech M. Forward osmosis: principles, applications, and recent developments[J]. Journal of Membrane Science, 2006, 281(1/2): 70-87. |
2 | Suwaileh W, Pathak N, Shon H, et al. Forward osmosis membranes and processes: a comprehensive review of research trends and future outlook[J]. Desalination, 2020, 485: 114455. |
3 | Lutchmiah K, Verliefde A R D, Roest K, et al. Forward osmosis for application in wastewater treatment: a review[J]. Water Research, 2014, 58: 179-197. |
4 | 齐亚兵, 张思敬, 杨清翠. 正渗透水处理技术研究现状及进展[J]. 现代化工, 2021, 41(8): 52-57. |
Qi Y B, Zhang S J, Yang Q C. Research status and progress on forward osmosis water treatment technologies[J]. Modern Chemical Industry, 2021, 41(8): 52-57. | |
5 | Chekli L, Phuntsho S, Kim J E, et al. A comprehensive review of hybrid forward osmosis systems: performance, applications and future prospects[J]. Journal of Membrane Science, 2016, 497: 430-449. |
6 | Wang J L, Liu X J. Forward osmosis technology for water treatment: recent advances and future perspectives[J]. Journal of Cleaner Production, 2021, 280: 124354. |
7 | Ibrar I, Altaee A, Zhou J L, et al. Challenges and potentials of forward osmosis process in the treatment of wastewater[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(13): 1339-1383. |
8 | Alihemati Z, Hashemifard S A, Matsuura T, et al. Current status and challenges of fabricating thin film composite forward osmosis membrane: a comprehensive roadmap[J]. Desalination, 2020, 491: 114557. |
9 | 杨碧野, 姚之侃, 林赛赛, 等. 聚酰胺薄层复合膜性能劣化机理及表面改性策略[J]. 膜科学与技术, 2020, 40(3): 161-167. |
Yang B Y, Yao Z K, Lin S S, et al. Deterioration mechanism and modification strategie of polyamide thin film composite membranes[J]. Membrane Science and Technology, 2020, 40(3): 161-167. | |
10 | Lau W J, Gray S, Matsuura T, et al. A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches[J]. Water Research, 2015, 80: 306-324. |
11 | 孙艳, 刘士涛, 邓尚, 等. 负载羧基化球状介孔纳米颗粒TFN膜的研究[J]. 化工学报, 2020, 71(S1): 454-460. |
Sun Y, Liu S T, Deng S, et al. Study on TFN membrane loaded with carboxylated spherical mesoporous nanoparticles[J]. CIESC Journal, 2020, 71(S1): 454-460. | |
12 | Al M A. Important approaches to enhance reverse osmosis (RO) thin film composite (TFC) membranes performance[J]. Membranes, 2018, 8(3): 68. |
13 | Jeong B H, Hoek E M V, Yan Y S, et al. Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes[J]. Journal of Membrane Science, 2007, 294(1/2): 1-7. |
14 | Ma X H, Guo H, Yang Z, et al. Carbon nanotubes enhance permeability of ultrathin polyamide rejection layers[J]. Journal of Membrane Science, 2019, 570/571: 139-145. |
15 | Yuan S S, Li X, Zhu J Y, et al. Covalent organic frameworks for membrane separation[J]. Chemical Society Reviews, 2019, 48(10): 2665-2681. |
16 | Zhao D L, Feng F, Shen L, et al. Engineering metal-organic frameworks (MOFs) based thin-film nanocomposite (TFN) membranes for molecular separation[J]. Chemical Engineering Journal, 2023, 454: 140447. |
17 | Liu X G, Shan Y Y, Zhang S T, et al. Application of metal organic framework in wastewater treatment[J]. Green Energy & Environment, 2023, 8(3): 698-721. |
18 | Xiao F, Hu X Y, Chen Y B, et al. Porous Zr-based metal-organic frameworks (Zr-MOFs)-incorporated thin-film nanocomposite membrane toward enhanced desalination performance[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 47390-47403. |
19 | Wu L K, Xu Z L, Tong M, et al. Dissecting the role of nanomaterials on permeation enhancement of the thin-film nanocomposite membrane: ZIF-8 as an example[J]. Journal of Membrane Science, 2023, 673: 121494. |
20 | Samsami S, Sarrafzadeh M H, Ahmadi A. Surface modification of thin-film nanocomposite forward osmosis membrane with super-hydrophilic MIL-53 (Al) for doxycycline removal as an emerging contaminant and membrane antifouling property enhancement[J]. Chemical Engineering Journal, 2022, 431: 133469. |
21 | Ma D C, Peh S B, Han G, et al. Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: toward enhancement of water flux and salt rejection[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7523-7534. |
22 | Basu S, Balakrishnan M. Polyamide thin film composite membranes containing ZIF-8 for the separation of pharmaceutical compounds from aqueous streams[J]. Separation and Purification Technology, 2017, 179: 118-125. |
23 | Bayrami A, Bagherzadeh M, Navi H, et al. Thin-film nanocomposite membranes containing aspartic acid-modified MIL-53-NH2 (Al) for boosting desalination and anti-fouling performance[J]. Desalination, 2022, 521: 115386. |
24 | Liao Z P, Fang X F, Xie J, et al. Hydrophilic hollow nanocube-functionalized thin film nanocomposite membrane with enhanced nanofiltration performance[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5344-5352. |
25 | Bonnett B L, Smith E D, De La Garza M, et al. PCN-222 metal-organic framework nanoparticles with tunable pore size for nanocomposite reverse osmosis membranes[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15765-15773. |
26 | Ren J W, Langmi H W, North B C, et al. Modulated synthesis of zirconium-metal organic framework (Zr-MOF) for hydrogen storage applications[J]. International Journal of Hydrogen Energy, 2014, 39(2): 890-895. |
27 | Lu Y, Wang R Y, Zhu Y Z, et al. Two-dimensional fractal nanocrystals templating for substantial performance enhancement of polyamide nanofiltration membrane[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(37): e2019891118. |
28 | Seoane B, Castellanos S, Dikhtiarenko A, et al. Multi-scale crystal engineering of metal organic frameworks[J]. Coordination Chemistry Reviews, 2016, 307: 147-187. |
29 | Cavka J H, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. |
30 | Huang H, Qu X Y, Dong H, et al. Role of NaA zeolites in the interfacial polymerization process towards a polyamide nanocomposite reverse osmosis membrane[J]. RSC Advances, 2013, 3(22): 8203-8207. |
31 | Hotze E M, Phenrat T, Lowry G V. Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment[J]. Journal of Environmental Quality, 2010, 39(6): 1909-1924. |
32 | Knebel A, Friebe S, Bigall N C, et al. Comparative study of MIL-96(Al) as continuous metal-organic frameworks layer and mixed-matrix membrane[J]. ACS Applied Materials & Interfaces, 2016, 8(11): 7536-7544. |
33 | Duan J T, Pan Y C, Pacheco F, et al. High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8[J]. Journal of Membrane Science, 2015, 476: 303-310. |
34 | Wang F H, Zheng T, Xiong R H, et al. Strong improvement of reverse osmosis polyamide membrane performance by addition of ZIF-8 nanoparticles: effect of particle size and dispersion in selective layer[J]. Chemosphere, 2019, 233: 524-531. |
35 | Lind M L, Ghosh A K, Jawor A, et al. Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes[J]. Langmuir, 2009, 25(17): 10139-10145. |
36 | Kim E S, Deng B L. Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications[J]. Journal of Membrane Science, 2011, 375(1/2): 46-54. |
37 | Perez E V, Balkus K J, Ferraris J P, et al. Mixed-matrix membranes containing MOF-5 for gas separations[J]. Journal of Membrane Science, 2009, 328(1/2): 165-173. |
38 | 周倩, 赵频, 刘浩, 等. 氧化石墨烯表面改性正渗透膜制备及其抗污染性能[J]. 膜科学与技术, 2022, 42(4): 81-88, 95. |
Zhou Q, Zhao P, Liu H, et al. Thin-film composite forward osmosis membranes modified by graphene oxide surface grafting for enhancing the anti-fouling capacity[J]. Membrane Science and Technology, 2022, 42(4): 81-88, 95. |
[1] | Zijia ZHANG, Xinyue QIU, Xiang SUN, Zhibin LUO, Haizhong LUO, Gaohong HE, Xuehua RUAN. Progress in molecular structure design for polyimide membrane materials to enhance CO2 permeation ability [J]. CIESC Journal, 2024, 75(4): 1137-1152. |
[2] | Zhouyang SHEN, Kang XUE, Qing LIU, Chengxiang SHI, Jijun ZOU, Xiangwen ZHANG, Lun PAN. Research progress on endothermic nanofluid fuels [J]. CIESC Journal, 2024, 75(4): 1167-1182. |
[3] | Binyu MO, Yaxin ZHANG, Guozhen LIU, Gongping LIU, Wanqin JIN. Recent progress of metal-organic framework membranes for mono/divalent ions separation [J]. CIESC Journal, 2024, 75(4): 1183-1197. |
[4] | Yiru WEN, Jia FU, Dahuan LIU. Advances in machine learning-based materials research for MOFs: energy gas adsorption separation [J]. CIESC Journal, 2024, 75(4): 1370-1381. |
[5] | Lingxian ZHANG, Bin LIU, Lin DENG, Yuhang REN. PEMFC fault diagnosis based on improved TSO optimized Xception [J]. CIESC Journal, 2024, 75(3): 945-955. |
[6] | Yaowen TAN, Panxing JIANG, Qing DU, Wanqiu YU, Xiaofei WEN, Zhigang ZHAN. Numerical study of the effects of operating voltage on the degradation of membrane electrodes of PEMFC [J]. CIESC Journal, 2024, 75(3): 974-986. |
[7] | Xinrui ZHANG, Xuemei CHEN. CNT/PVA@carbon-cloth membrane for performance study of solar and electric-driven interfacial evaporation [J]. CIESC Journal, 2024, 75(3): 1028-1039. |
[8] | Pei WANG, Ruiming DUAN, Guangru ZHANG, Wanqin JIN. Modeling and simulation analysis of solar driven membrane separation biomethane hydrogen production process [J]. CIESC Journal, 2024, 75(3): 967-973. |
[9] | Lingjie WANG, Hailong GAO, Jipeng JIN, Zhihao WANG, Jianbo LI. Influence of pollutants in seawater on performance of reverse electrodialysis stacks [J]. CIESC Journal, 2024, 75(2): 695-705. |
[10] | Hong CHEN, Kun JIANG, Tingjiang TANG, Yiyuan HUANG, Bin CHI, Shijun LIAO. Research on membrane electrode assembly consistency of high-power proton exchange membrane fuel cell stack [J]. CIESC Journal, 2024, 75(2): 637-646. |
[11] | Wenqi ZHAO, Yanjun DENG, Chunying ZHU, Taotao FU, Youguang MA. Research progress on nanoparticle stabilizing Pickering emulsion and droplet coalescence dynamics [J]. CIESC Journal, 2024, 75(1): 33-46. |
[12] | Jiao ZHU, Liping LUAN, Shenzhen CONG, Xinlei LIU. Organic membranes for H2 separation [J]. CIESC Journal, 2024, 75(1): 138-158. |
[13] | Youjia WANG, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress on separation technology of diesel hydrocarbon components [J]. CIESC Journal, 2024, 75(1): 20-32. |
[14] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[15] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||