CIESC Journal ›› 2024, Vol. 75 ›› Issue (9): 3176-3187.DOI: 10.11949/0438-1157.20240307
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Shuzhen WANG(), Yuting WANG, Mengxi MA, Wei ZHANG, Jiangnan XIANG, Haiying LU, Yan WANG(
), Binbin FAN, Jiajun ZHENG, Weijiong DAI, Ruifeng LI
Received:
2024-03-18
Revised:
2024-04-28
Online:
2024-10-10
Published:
2024-09-25
Contact:
Yan WANG
王树振(), 王玉婷, 马梦茜, 张巍, 向江南, 鲁海莹, 王琰(
), 范彬彬, 郑家军, 代卫炯, 李瑞丰
通讯作者:
王琰
作者简介:
王树振(1998—),男,硕士研究生,2544971753@qq.com
基金资助:
CLC Number:
Shuzhen WANG, Yuting WANG, Mengxi MA, Wei ZHANG, Jiangnan XIANG, Haiying LU, Yan WANG, Binbin FAN, Jiajun ZHENG, Weijiong DAI, Ruifeng LI. Synthesis of ZSM-22 molecular sieve by two-step crystallization and its hydroisomerization performance[J]. CIESC Journal, 2024, 75(9): 3176-3187.
王树振, 王玉婷, 马梦茜, 张巍, 向江南, 鲁海莹, 王琰, 范彬彬, 郑家军, 代卫炯, 李瑞丰. 两步晶化合成ZSM-22分子筛及其临氢异构反应性能[J]. 化工学报, 2024, 75(9): 3176-3187.
样品 | BET比表面积/(m2/g) | 微孔比表面积/(m2/g) | 外比表面积/(m2/g) | 孔体积/(cm3/g) | 微孔体积/(cm3/g) | 介孔体积/(cm3/g) |
---|---|---|---|---|---|---|
Z-22 | 209 | 169 | 40 | 0.15 | 0.07 | 0.08 |
S6-C | 226 | 185 | 41 | 0.14 | 0.07 | 0.07 |
S7-C | 247 | 212 | 35 | 0.17 | 0.08 | 0.09 |
S8-C | 267 | 227 | 40 | 0.16 | 0.08 | 0.08 |
S12-C | 270 | 251 | 19 | 0.14 | 0.09 | 0.05 |
S&C | 228 | 203 | 25 | 0.15 | 0.08 | 0.07 |
S36 | 297 | 278 | 19 | 0.14 | 0.1 | 0.04 |
Table 1 Texture properties of the two-step crystallized samples
样品 | BET比表面积/(m2/g) | 微孔比表面积/(m2/g) | 外比表面积/(m2/g) | 孔体积/(cm3/g) | 微孔体积/(cm3/g) | 介孔体积/(cm3/g) |
---|---|---|---|---|---|---|
Z-22 | 209 | 169 | 40 | 0.15 | 0.07 | 0.08 |
S6-C | 226 | 185 | 41 | 0.14 | 0.07 | 0.07 |
S7-C | 247 | 212 | 35 | 0.17 | 0.08 | 0.09 |
S8-C | 267 | 227 | 40 | 0.16 | 0.08 | 0.08 |
S12-C | 270 | 251 | 19 | 0.14 | 0.09 | 0.05 |
S&C | 228 | 203 | 25 | 0.15 | 0.08 | 0.07 |
S36 | 297 | 278 | 19 | 0.14 | 0.1 | 0.04 |
样品 | 酸量/(μmol/g) | 总酸量/(μmol/g) | 表面Si/Al① | Si/Al② | R③ | |
---|---|---|---|---|---|---|
弱酸 | 强酸 | |||||
Z-22 | 435 | 308 | 743 | 21 | 45 | 2.14 |
S6-C | 273 | 207 | 480 | 26 | 65 | 2.51 |
S7-C | 228 | 168 | 396 | 25 | 76 | 3.04 |
S8-C | 223 | 152 | 377 | 22 | 79 | 3.61 |
S12-C | 189 | 149 | 338 | 32 | 122 | 3.81 |
S&C | 190 | 151 | 341 | — | — | |
S36 | 25 | 23 | 48 | 85 | — |
Table 2 Acidity properties calculated by NH3-TPD curve and elemental analysis
样品 | 酸量/(μmol/g) | 总酸量/(μmol/g) | 表面Si/Al① | Si/Al② | R③ | |
---|---|---|---|---|---|---|
弱酸 | 强酸 | |||||
Z-22 | 435 | 308 | 743 | 21 | 45 | 2.14 |
S6-C | 273 | 207 | 480 | 26 | 65 | 2.51 |
S7-C | 228 | 168 | 396 | 25 | 76 | 3.04 |
S8-C | 223 | 152 | 377 | 22 | 79 | 3.61 |
S12-C | 189 | 149 | 338 | 32 | 122 | 3.81 |
S&C | 190 | 151 | 341 | — | — | |
S36 | 25 | 23 | 48 | 85 | — |
样品 | 150℃时酸量/(μmol/g) | 350℃时酸量/(μmol/g) | 总酸量 | BW①/% | ||||
---|---|---|---|---|---|---|---|---|
B | L | B | L | B | L | B/L | ||
Z-22 | 12 | 15 | 93 | 21 | 105 | 36 | 2.92 | 11.4 |
S6-C | 19 | 17 | 56 | 12 | 75 | 29 | 2.58 | 25.3 |
S12-C | 2 | 18 | 43 | 9 | 45 | 27 | 1.67 | 4.4 |
Table 3 Acidity properties of molecular sieve calculated by Py-IR spectra
样品 | 150℃时酸量/(μmol/g) | 350℃时酸量/(μmol/g) | 总酸量 | BW①/% | ||||
---|---|---|---|---|---|---|---|---|
B | L | B | L | B | L | B/L | ||
Z-22 | 12 | 15 | 93 | 21 | 105 | 36 | 2.92 | 11.4 |
S6-C | 19 | 17 | 56 | 12 | 75 | 29 | 2.58 | 25.3 |
S12-C | 2 | 18 | 43 | 9 | 45 | 27 | 1.67 | 4.4 |
1 | Wei C H, Zhang G H, Zhao L, et al. Effect of metal-acid balance and textual modifications on hydroisomerization catalysts for n-alkanes with different chain length: a mini-review[J]. Fuel, 2022, 315: 122809. |
2 | Shamzhy M, Opanasenko M, Concepción P, et al. New trends in tailoring active sites in zeolite-based catalysts[J]. Chemical Society Reviews, 2019, 48(4): 1095-1149. |
3 | Niu P Y, Xi H J, Ren J, et al. Micropore blocked core-shell ZSM-22 designed via epitaxial growth with enhanced shape selectivity and high n-dodecane hydroisomerization performance[J]. Catalysis Science & Technology, 2018, 8(24): 6407-6419. |
4 | Song H, Zhao L L, Wang N. Rare earth metals modified Ni-S2O8 2-/ZrO2-Al2O3 catalysts for n-pentane isomerization[J]. Chinese Journal of Chemical Engineering, 2017, 25(1): 74-78. |
5 | Liu P, Yao Y, Zhang X G, et al. Rare earth metals ion-exchanged β-zeolites as supports of platinum catalysts for hydroisomerization of n-heptane[J]. Chinese Journal of Chemical Engineering, 2011, 19(2): 278-284. |
6 | Smeeth M, Spikes H, Gunsel S. Boundary film formation by viscosity index improvers[J]. Tribology Transactions, 1996, 39(3): 726-734. |
7 | Xiang J N, Zhang W, Zhang H P, et al. Effect of Fe substitution over ZSM-48 on performance of n-dodecane hydroisomerization and distribution of isomers[J]. Solid State Sciences, 2023, 142: 107250. |
8 | Needham D E, Wei I C, Seybold P G. Molecular modeling of the physical properties of alkanes[J]. Journal of the American Chemical Society, 1988, 110(13): 4186-4194. |
9 | Brennan J A. Wide-temperature range synthetic hydrocarbon fluids[J]. Industrial & Engineering Chemistry Product Research and Development, 1980, 19(1): 2-6. |
10 | Claude M C, Martens J A. Monomethyl-branching of long n-alkanes in the range from decane to tetracosane on Pt/H-ZSM-22 bifunctional catalyst[J]. Journal of Catalysis, 2000, 190(1): 39-48. |
11 | Jaroszewska K, Masalska A, Grzechowiak J R. Hydroisomerization of long-chain bio-derived n-alkanes into monobranched high cetane isomers via a dual-component catalyst bed[J]. Fuel, 2020, 268: 117239. |
12 | Roldán R, Beale A M, Sánchez-Sánchez M, et al. Effect of the impregnation order on the nature of metal particles of bi-functional Pt/Pd-supported zeolite beta materials and on their catalytic activity for the hydroisomerization of alkanes[J]. Journal of Catalysis, 2008, 254(1): 12-26. |
13 | Childers D, Saha A, Schweitzer N, et al. Correlating heat of adsorption of CO to reaction selectivity: geometric effects vs electronic effects in neopentane isomerization over Pt and Pd catalysts[J]. ACS Catalysis, 2013, 3(11): 2487-2496. |
14 | Meng L Q, Vanbutsele G, Pestman R, et al. Mechanistic aspects of n-paraffins hydrocracking: influence of zeolite morphology and acidity of Pd(Pt)/ZSM-5 catalysts[J]. Journal of Catalysis, 2020, 389: 544-555. |
15 | Munusamy K, Das R K, Ghosh S, et al. Synthesis, characterization and hydroisomerization activity of ZSM-22/23 intergrowth zeolite[J]. Microporous and Mesoporous Materials, 2018, 266: 141-148. |
16 | Choudhury I R, Hayasaka K, Thybaut J W, et al. Pt/H-ZSM-22 hydroisomerization catalysts optimization guided by single-event microkinetic modeling[J]. Journal of Catalysis, 2012, 290: 165-176. |
17 | Laxmi Narasimhan C S, Thybaut J W, Marin G B, et al. Relumped single-event microkinetic model for alkane hydrocracking on shape-selective catalysts: catalysis on ZSM-22 pore mouths, bridge acid sites and micropores[J]. Chemical Engineering Science, 2004, 59(22/23): 4765-4772. |
18 | Liu S Y, He Y R, Zhang H K, et al. Design and synthesis of Ga-doped ZSM-22 zeolites as highly selective and stable catalysts for n-dodecane isomerization[J]. Catalysis Science & Technology, 2019, 9(11): 2812-2827. |
19 | Niu P Y, Liu P, Xi H J, et al. Crystallization mechanism of pure-silica ZSM-22 in the seed-assistant system[J]. Crystal Growth & Design, 2018, 18(11): 6591-6601. |
20 | Wang X Y, Zhang X W, Wang Q F. n-Dodecane hydroisomerization over hierarchical ZSM-22 prepared by a dual-protected alkali treatment[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8495-8505. |
21 | Jacobs P A, Beyer H K, Valyon J. Properties of the end members in the Pentasil-family of zeolites: characterization as adsorbents[J]. Zeolites, 1981, 1(3): 161-168. |
22 | Zhao J, Yin Y C, Li Y, et al. Synthesis and characterization of mesoporous zeolite Y by using block copolymers as templates[J]. Chemical Engineering Journal, 2016, 284: 405-411. |
23 | Lu P, Chen L, Zhang Y F, et al. Rapid synthesis of ZSM-22 zeolites using imidazolium-based ionic liquids as OSDAs in fluoride media[J]. Microporous and Mesoporous Materials, 2016, 236: 193-201. |
24 | 程群. X射线衍射法测定高岭石合成的NaY分子筛物相组成、结晶度、晶胞参数及硅铝比研究[J]. 冶金标准化与质量, 2006, 44(2): 8-10. |
Cheng Q. Study on determining composition, crystallinity, cell parameter and ratio of silicate to aluminium of zeolite NaY treated from kaolinite by X-ray diffractometer[J]. Metallurgical Standardization & Quality, 2006, 44(2): 8-10. | |
25 | 储刚,陈刚. X射线衍射法测定ZSM-5分子筛硅铝比[J]. 石油化工, 1995, 24(7): 498-506. |
Chu G, Chen G. Determination of SiO2/Al2O3 ratio of ZSM-5 molecular sieve by X-ray diffraction[J]. Petrochemical Technology, 1995, 24(7): 498-499, 506. | |
26 | Niu P Y, Xi H J, Ren J, et al. High selectivity for n-dodecane hydroisomerization over highly siliceous ZSM-22 with low Pt loading[J]. Catalysis Science & Technology, 2017, 7(21): 5055-5068. |
27 | Emeis C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. Journal of Catalysis, 1993, 141(2): 347-354. |
28 | Zholobenko V, Freitas C, Jendrlin M, et al. Probing the acid sites of zeolites with pyridine: quantitative AGIR measurements of the molar absorption coefficients[J]. Journal of Catalysis, 2020, 385: 52-60. |
29 | Pieterse J A Z, Veefkind-Reyes S, Seshan K, et al. On the accessibility of acid sites in ferrierite for pyridine[J]. Journal of Catalysis, 1999, 187(2): 518-520. |
30 | Wang L, Niu P Y, Xi H J, et al. Controllable synthesis of core-shell structured ZSM-22 via one-pot approach[J]. Journal of Solid State Chemistry, 2023, 317: 123663. |
31 | Hayasaka K, Liang D D, Huybrechts W, et al. Formation of ZSM-22 zeolite catalytic particles by fusion of elementary nanorods[J]. Chemistry, 2007, 13(36): 10070-10077. |
32 | Wang L, Niu P Y, Xi H J, et al. Facile synthesis of size-controlled ZSM-22 zeolite along the [001] direction via two-step crystallization[J]. Industrial & Engineering Chemistry Research, 2021, 60(47): 17006-17015. |
33 | Liu L L, Zhang M W, Wang L, et al. Modulating acid site distribution in MTT channels for controllable hydroisomerization of long-chain n-alkanes[J]. Fuel Processing Technology, 2023, 241: 107605. |
34 | Zhang M W, Liu L L, Wang L, et al. Four-carbon segmented discrete hydrocracking of long-chain paraffins in MTT channels following a pore-mouth mechanism[J]. ACS Catalysis, 2022, 12(16): 10313-10325. |
[1] | Yachao LIU, Xiaojie TAN, Xudong LI, Rui WANG, Hui WANG, Xuan HAN, Qingshan ZHAO. Synthesis of efficient cobalt carbonate nanosheets based on DES for oxygen evolution reaction [J]. CIESC Journal, 2024, 75(9): 3320-3328. |
[2] | Mengting ZHANG, Shulin WANG, Xi SANG, Xinghao YUAN, Gang XU. Artificial Cu-TM1459 metalloenzyme catalyzes asymmetric Michael addition reaction [J]. CIESC Journal, 2024, 75(9): 3255-3265. |
[3] | Ran WANG, Huan WANG, Xiaoyun XIONG, Huimin GUAN, Yunfeng ZHENG, Cailin CHEN, Yucai QIN, Lijuan SONG. Visual analysis of mass transfer enhanced active site utilization efficiency of FCC catalyst [J]. CIESC Journal, 2024, 75(9): 3198-3209. |
[4] | Shaojun DOU, Liang HAO. Mesoscale simulation of coupled gas charge transfer process in PEMFC catalyst layer [J]. CIESC Journal, 2024, 75(8): 3002-3010. |
[5] | Yin WANG, Pengfei CHU, Hu LIU, Jing LYU, Shouying HUANG, Shengping WANG, Xinbin MA. Influence of aluminum sol with different pH on performance of shaped mordenite catalyst for dimethyl ether carbonylation [J]. CIESC Journal, 2024, 75(7): 2533-2543. |
[6] | Lu YANG, Congcong LIU, Tongtong MENG, Boyuan ZHANG, Tengfei YANG, Wen’an DENG, Xiaobin WANG. Hydrogenation and coke-suppression performance of dispersed catalyst in coal/heavy oil co-processing reactions [J]. CIESC Journal, 2024, 75(7): 2556-2564. |
[7] | Xusheng LIU, Zeyang LI, Yusen YANG, Min WEI. Research progress on electrocatalytic carbon dioxide reduction to gaseous products [J]. CIESC Journal, 2024, 75(7): 2385-2408. |
[8] | Li LUO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Alumina structure and surface property regulation for catalyzing methanol dehydration to dimethyl ether [J]. CIESC Journal, 2024, 75(7): 2522-2532. |
[9] | Tianwen WANG, Su YAN, Mengyuan ZHAO, Tianrang YANG, Jianguo LIU. Mechanisms of chromium poisoning in solid oxide cell air electrodes and research advances in enhancing chromium-resistivity [J]. CIESC Journal, 2024, 75(6): 2091-2108. |
[10] | Zhong JI, Yanling ZHAO, Yumeng CHEN, Linxia GAO, Yipeng WANG, Huan LIU. Adsorption performance and mechanism of ZSM-5 molecular sieves on typical coating VOCs [J]. CIESC Journal, 2024, 75(6): 2332-2343. |
[11] | Tingting ZHAO, Lixiang YAN, Fuli TANG, Minzhi XIAO, Ye TAN, Liubin SONG, Zhongliang XIAO, Lingjun LI. Research progress on design strategies and reaction mechanisms of photo-assisted Li-CO2 battery catalysts [J]. CIESC Journal, 2024, 75(5): 1750-1764. |
[12] | Jinhong MO, Xue HAN, Yixiang ZHU, Jing LI, Xuyu WANG, Hongbing JI. Investigation of Pt-Ga/CeO2-ZrO2-Al2O3 bifunctional catalyst for the catalytic conversion of n-butane into olefins [J]. CIESC Journal, 2024, 75(5): 1855-1869. |
[13] | Yu DING, Changze YANG, Jun LI, Huidong SUN, Hui SHANG. Research progress and prospects of atomic-scale molybdenum-based hydrodesulfurization catalysts [J]. CIESC Journal, 2024, 75(5): 1735-1749. |
[14] | Xiaokai CHENG, Wei LI, Jingdai WANG, Yongrong YANG. Advances in nickel catalyzed controlled/living radical polymerization reactions [J]. CIESC Journal, 2024, 75(4): 1105-1117. |
[15] | Yiwei FAN, Wei LIU, Yingying LI, Peixia WANG, Jisong ZHANG. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier [J]. CIESC Journal, 2024, 75(4): 1198-1208. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 173
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 175
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||