CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6453-6464.DOI: 10.11949/0438-1157.20250680
• Separation engineering • Previous Articles Next Articles
Wenyuan TAO1,2,3(
), Wenkai ZHAO1, Haikuo SHEN3, Qiang GUO1,2, Yonghou XIAO1,2(
)
Received:2025-06-23
Revised:2025-08-21
Online:2026-01-23
Published:2025-12-31
Contact:
Yonghou XIAO
陶玟媛1,2,3(
), 赵文凯1, 沈海阔3, 郭强1,2, 肖永厚1,2(
)
通讯作者:
肖永厚
作者简介:陶玟媛(2001—),女,硕士研究生,taowenyuan010103@163.com
基金资助:CLC Number:
Wenyuan TAO, Wenkai ZHAO, Haikuo SHEN, Qiang GUO, Yonghou XIAO. Machine learning-driven design and optimization of molecular sieve-based efficient CO adsorbents[J]. CIESC Journal, 2025, 76(12): 6453-6464.
陶玟媛, 赵文凯, 沈海阔, 郭强, 肖永厚. 机器学习驱动分子筛基CO吸附剂设计与优化[J]. 化工学报, 2025, 76(12): 6453-6464.
Add to citation manager EndNote|Ris|BibTeX
| Dataset | Mean | Std. deviation | Min | 25% percentile | 50% percentile | 75% percentile | Max | Missing data/% |
|---|---|---|---|---|---|---|---|---|
| MPD/Å | 6.62 | 1.47 | 5.00 | 5.00 | 7.30 | 8.10 | 8.10 | 0.00 |
| LPD/Å | 5.54 | 1.66 | 3.80 | 4.10 | 4.10 | 7.40 | 7.40 | 0.00 |
| cage size/Å | 10.95 | 1.56 | 0.00 | 11.20 | 11.20 | 11.40 | 11.40 | 0.00 |
| VS | 1.46 | 0.69 | 0.00 | 1.00 | 1.00 | 2.00 | 3.00 | 0.00 |
| Si/Al | 5.05 | 30.13 | 0.20 | 1.00 | 1.00 | 2.35 | 450.00 | 0.00 |
| SSA/(m2/g) | 547.07 | 197.15 | 149.86 | 392.00 | 579.70 | 669.90 | 1005.00 | 0.00 |
| TPV/(cm3/g) | 0.28 | 0.13 | 0.07 | 0.18 | 0.27 | 0.31 | 0.64 | 1.85 |
| Cu(Ⅰ) loading/%(mass) | 5.77 | 10.71 | 0.00 | 0.00 | 0.00 | 10.39 | 46.10 | 0.00 |
| T/K | 288.09 | 37.69 | 150.00 | 293.00 | 298.00 | 303.00 | 338.00 | 0.00 |
| P/kPa | 294.90 | 291.43 | 1.25 | 80.00 | 103.15 | 500.00 | 1000.00 | 0.00 |
| CO adsorption capacity/(mmol/g) | 1.88 | 0.95 | 0.01 | 1.15 | 1.89 | 2.56 | 4.35 | 0.00 |
Table 1 Descriptive statistics of all features
| Dataset | Mean | Std. deviation | Min | 25% percentile | 50% percentile | 75% percentile | Max | Missing data/% |
|---|---|---|---|---|---|---|---|---|
| MPD/Å | 6.62 | 1.47 | 5.00 | 5.00 | 7.30 | 8.10 | 8.10 | 0.00 |
| LPD/Å | 5.54 | 1.66 | 3.80 | 4.10 | 4.10 | 7.40 | 7.40 | 0.00 |
| cage size/Å | 10.95 | 1.56 | 0.00 | 11.20 | 11.20 | 11.40 | 11.40 | 0.00 |
| VS | 1.46 | 0.69 | 0.00 | 1.00 | 1.00 | 2.00 | 3.00 | 0.00 |
| Si/Al | 5.05 | 30.13 | 0.20 | 1.00 | 1.00 | 2.35 | 450.00 | 0.00 |
| SSA/(m2/g) | 547.07 | 197.15 | 149.86 | 392.00 | 579.70 | 669.90 | 1005.00 | 0.00 |
| TPV/(cm3/g) | 0.28 | 0.13 | 0.07 | 0.18 | 0.27 | 0.31 | 0.64 | 1.85 |
| Cu(Ⅰ) loading/%(mass) | 5.77 | 10.71 | 0.00 | 0.00 | 0.00 | 10.39 | 46.10 | 0.00 |
| T/K | 288.09 | 37.69 | 150.00 | 293.00 | 298.00 | 303.00 | 338.00 | 0.00 |
| P/kPa | 294.90 | 291.43 | 1.25 | 80.00 | 103.15 | 500.00 | 1000.00 | 0.00 |
| CO adsorption capacity/(mmol/g) | 1.88 | 0.95 | 0.01 | 1.15 | 1.89 | 2.56 | 4.35 | 0.00 |
| Model | Test R2 | RMSE | MAE | Outer CV R2 |
|---|---|---|---|---|
| GBDT | 0.90 | 0.29 | 0.17 | 0.87 |
| RF | 0.85 | 0.35 | 0.26 | 0.84 |
| ERT | 0.88 | 0.31 | 0.23 | 0.86 |
| XGB | 0.91 | 0.29 | 0.16 | 0.87 |
Table 2 Performance metrics comparison of different ML models
| Model | Test R2 | RMSE | MAE | Outer CV R2 |
|---|---|---|---|---|
| GBDT | 0.90 | 0.29 | 0.17 | 0.87 |
| RF | 0.85 | 0.35 | 0.26 | 0.84 |
| ERT | 0.88 | 0.31 | 0.23 | 0.86 |
| XGB | 0.91 | 0.29 | 0.16 | 0.87 |
| Model | Optimal hyperparameter |
|---|---|
| GBDT | {'learning_rate': 0.2, 'max_depth': 8, 'min_samples_leaf': 3, 'min_samples_split': 10, 'n_estimators': 200, 'subsample': 0.8} |
| RF | {'max_depth': 10, 'max_features': 'sqrt', 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 50} |
| ERT | {'max_depth': 7, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 100} |
| XGB | {'colsample_bytree': 0.8, 'learning_rate': 0.1, 'max_depth': 7, 'n_estimators': 500, 'subsample': 0.5} |
Table 3 Optimal hyperparameter configuration determined based on cross validation
| Model | Optimal hyperparameter |
|---|---|
| GBDT | {'learning_rate': 0.2, 'max_depth': 8, 'min_samples_leaf': 3, 'min_samples_split': 10, 'n_estimators': 200, 'subsample': 0.8} |
| RF | {'max_depth': 10, 'max_features': 'sqrt', 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 50} |
| ERT | {'max_depth': 7, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 100} |
| XGB | {'colsample_bytree': 0.8, 'learning_rate': 0.1, 'max_depth': 7, 'n_estimators': 500, 'subsample': 0.5} |
| [1] | Fujimori S, Inoue S. Carbon monoxide in main-group chemistry[J]. Journal of the American Chemical Society, 2022, 144(5): 2034-2050. |
| [2] | Kapetanaki S M, Burton M J, Basran J, et al. A mechanism for CO regulation of ion channels[J]. Nature Communications, 2018, 9(1): 907. |
| [3] | 唐磊, 王振菲, 李聪利, 等. Co-MOF-74和Mg-MOF-74的CO工作吸附容量及操作条件[J]. 化工学报, 2025, 76(5): 2279-2293. |
| Tang L, Wang Z F, Li C L, et al. CO working capacity and operating conditions of Co-MOF-74 and Mg-MOF-74[J]. CIESC Journal, 2025, 76(5): 2279-2293. | |
| [4] | Yin Y, Wen Z H, Shi L, et al. Cuprous/vanadium sites on MIL-101 for selective CO adsorption from gas mixtures with superior stability[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11284-11292. |
| [5] | Li Y, Mei Y R, Zhang T, et al. Paths to carbon neutrality in China's chemical industry[J]. Frontiers in Environmental Science, 2022, 10: 999152. |
| [6] | Cheng X, Liao Y, Lei Z, et al. Multi-scale design of MOF-based membrane separation for CO2/CH4 mixture via integration of molecular simulation, machine learning and process modeling and simulation[J]. Journal of Membrane Science, 2023, 672: 121430. |
| [7] | Ma X Z, Albertsma J, Gabriels D, et al. Carbon monoxide separation: past, present and future[J]. Chemical Society Reviews, 2023, 52(11): 3741-3777. |
| [8] | 郭强, 肇启东, 肖永厚. 双回流变压吸附高效分离CO/H2制备高纯H2和CO[J]. 化工学报, 2024, 75(11): 4298-4308. |
| Guo Q, Zhao Q D, Xiao Y H. Preparation of high-purity H2 and CO by efficient separation of CO/H2 using dual-reflux pressure swing adsorption process[J]. CIESC Journal, 2024, 75(11): 4298-4308. | |
| [9] | Du S J, Huang J W, Ryder M R, et al. Probing sub-5 Ångstrom micropores in carbon for precise light olefin/paraffin separation[J]. Nature Communications, 2023, 14(1): 1197. |
| [10] | 熊波, 陈健, 李克兵, 等. 工业排放气二氧化碳捕集与利用技术进展[J]. 低碳化学与化工, 2023, 48(1): 9-18. |
| Xiong B, Chen J, Li K B, et al. Technical progress in carbon dioxide capture and utilization of industrial vent gas[J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(1): 9-18. | |
| [11] | Yang S H, Xiao Y H, Zhang W Y, et al. Facile preparation of C u ( Ⅰ ) / 5 A via one-step impregnation with highly dispersed CuCl in ethanol single solvent toward selective adsorption of CO from H2 stream[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(48): 15958-15967. |
| [12] | Yue X, Wang S, Gao J X, et al. Effects of mesopore size on ethyl acetate adsorption-desorption behaviors over hierarchical ZSM-5/MCM-41 molecular sieves[J]. Separation and Purification Technology, 2024, 336: 126228. |
| [13] | Xue C L, Hao W M, Cheng W P, et al. Effects of pore size distribution of activated carbon (AC) on CuCl dispersion and CO adsorption for CuCl/AC adsorbent[J]. Chemical Engineering Journal, 2019, 375: 122049. |
| [14] | Oo W, Park J H, Zaw Win M, et al. Dual preservative effects of SnO2-chitosan on Cu1+-doped boehmite composites for stable CO adsorption properties[J]. Separation and Purification Technology, 2024, 348: 127631. |
| [15] | Li Y X, Zhong W, Zhou J J, et al. Reversible light-controlled CO adsorption via tuning π-complexation of Cu+ sites in azobenzene-decorated metal-organic frameworks[J]. Angewandte Chemie International Edition, 2022, 61(46): e202212732. |
| [16] | Wang Q, Wang M, Chen H W, et al. Fluorination strategy in GME zeolitic imidazolate frameworks for enhanced ethane/ethylene separation[J]. Separation and Purification Technology, 2025, 364: 132423. |
| [17] | Li C L, Wang J, Wang Z F, et al. Understanding the vacuum autoreduction behavior of Cu species in CuCl/NaY adsorbent for CO/N2 separation[J]. Microporous and Mesoporous Materials, 2024, 365: 112904. |
| [18] | Rao F, Liu M L, Liu C H, et al. Synthesis of binder-free pelletized Y zeolite for CO2 capture[J]. Carbon Capture Science & Technology, 2024, 10: 100166. |
| [19] | 文一如, 付佳, 刘大欢. 基于机器学习的MOFs材料研究进展: 能源气体吸附分离[J]. 化工学报, 2024, 75(4): 1370-1381. |
| Wen Y R, Fu J, Liu D H. Advances in machine learning-based materials research for MOFs: energy gas adsorption separation[J]. CIESC Journal, 2024, 75(4): 1370-1381. | |
| [20] | Pardakhti M, Moharreri E, Wanik D, et al. Machine learning using combined structural and chemical descriptors for prediction of methane adsorption performance of metal organic frameworks (MOFs)[J]. ACS Combinatorial Science, 2017, 19(10): 640-645. |
| [21] | Yuan X Z, Suvarna M, Low S, et al. Applied machine learning for prediction of CO2 adsorption on biomass waste-derived porous carbons[J]. Environmental Science & Technology, 2021, 55(17): 11925-11936. |
| [22] | Tao W Y, Zhao W K, Zhao Q D, et al. Ensemble-learning-guided optimization design for metal-organic framework adsorbents toward CO adsorption[J]. Inorganic Chemistry, 2025, 64(18): 9237-9250. |
| [23] | Tao W Y, Cui Y J, Zhao Q D, et al. Prediction of the enhanced performance of C u ( Ⅰ ) - m o d i f i e d porous materials towards CO adsorption by using tree-based machine learning models[J]. Separation and Purification Technology, 2025, 359: 130850. |
| [24] | Li J, Liu T Y, Palansooriya K N, et al. Zeolite-catalytic pyrolysis of waste plastics: machine learning prediction, interpretation, and optimization[J]. Applied Energy, 2025, 382: 125258. |
| [25] | Al-Sakkari E G, Ragab A, So T M Y, et al. Machine learning-assisted selection of adsorption-based carbon dioxide capture materials[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110732. |
| [26] | Zhang W J, Chen J F, Huang G H, et al. Machine learning-assisted prediction and exploration of the homogeneous oxidation of mercury in coal combustion flue gas[J]. Environmental Science & Technology, 2025, 59(22): 11073-11082. |
| [27] | Jayarathna R, Onsree T, Drummond S, et al. Experimental discovery of novel ammonia synthesis catalysts via active learning[J]. Journal of Materials Chemistry A, 2024, 12(5): 3046-3060. |
| [28] | Xu H, Mguni L L, Yao Y L, et al. Machine learning-assisted high-throughput screening of MOFs for efficient adsorption and separation of CF4/N2 [J]. Journal of Cleaner Production, 2024, 461: 142634. |
| [29] | Xiong T, Cui J W, Hou Z M, et al. Prediction of arsenic adsorption onto metal organic frameworks and adsorption mechanisms interpretation by machine learning[J]. Journal of Environmental Management, 2023, 347: 119065. |
| [30] | Zheng G T, Zhang S Y, Meng L H, et al. Machine learning-guided design and synthesis of eco-friendly poly(ethylene oxide) membranes for high-efficacy CO2/N2 separation[J]. Advanced Functional Materials, 2024, 34(51): 2410075. |
| [1] | Zihang WU, Zhenyuan XU, Jinfang YOU, Quanwen PAN, Ruzhu WANG. Cooling system for deep well drilling equipment based on adsorption cold storage technology [J]. CIESC Journal, 2025, 76(S1): 309-317. |
| [2] | Longyi LYU, Minglei TANG, Peng HAO, Minhao WU, Wenfang GAO, Guangming ZHANG. Progress on the performance and mechanism of high-solids anaerobic digestion enhanced by conductive materials [J]. CIESC Journal, 2025, 76(9): 4737-4751. |
| [3] | Zhihong CHEN, Jiawei WU, Xiaoling LOU, Junxian YUN. Recent advances in machine learning for biomanufacturing of chemicals [J]. CIESC Journal, 2025, 76(8): 3789-3804. |
| [4] | Zheng GAO, Hui WANG, Zhiguo QU. Data-driven high-throughput screening of anion-pillared metal-organic frameworks for hydrogen storage [J]. CIESC Journal, 2025, 76(8): 4259-4272. |
| [5] | Songwei SHI, Cheng ZHAO, Shuai LIU, Yuxuan YING, Mi YAN. Removal of biogas H2S using iron-rich fly ash coupled with Fe-Zn/Al2O3 [J]. CIESC Journal, 2025, 76(8): 4239-4247. |
| [6] | Xiayu FAN, Jianchen SUN, Keying LI, Xinya YAO, Hui SHANG. Machine learning drives system optimization of liquid organic hydrogen storage technology [J]. CIESC Journal, 2025, 76(8): 3805-3821. |
| [7] | Yuhong TIAN, Zhuangzhuang DU, Huifang XU, Ziqiang ZHU, Yucong WANG. Preparation of ZIF-8 based porous liquid and its SO2 adsorption performance [J]. CIESC Journal, 2025, 76(8): 4284-4296. |
| [8] | Junyi WANG, Zhangxun XIA, Fenning JING, Suli WANG. Study on the relaxation time distribution of electrochemical impedance spectroscopy in high temperature polymer electrolyte membrane fuel cells based on reformed hydrogen fuels [J]. CIESC Journal, 2025, 76(7): 3509-3520. |
| [9] | Xuyang LU, Qiang XU, Haopeng KANG, Jian SHI, Zeshui CAO, Liejin GUO. The CO reduction characteristics of magnetite oxygen carriers in chemical looping hydrogen production systems [J]. CIESC Journal, 2025, 76(7): 3286-3294. |
| [10] | Lili LU, Chen LI, Liuyun CHEN, Xinling XIE, Xuan LUO, Tongming SU, Zuzeng QIN, Hongbing JI. Morphology regulation of BiOBr and study on its performance of photocatalytic CO2 reduction [J]. CIESC Journal, 2025, 76(6): 2687-2700. |
| [11] | Jialang HU, Mingyuan JIANG, Lyuming JIN, Yonggang ZHANG, Peng HU, Hongbing JI. Machine learning-assisted high-throughput computational screening of MOFs and advances in gas separation research [J]. CIESC Journal, 2025, 76(5): 1973-1996. |
| [12] | Pengtao GUO, Ting WANG, Bo XUE, Yunpan YING, Dahuan LIU. Ultramicroporous MOF with multiple adsorption sites for CH4/N2 separation [J]. CIESC Journal, 2025, 76(5): 2304-2312. |
| [13] | Lei TANG, Zhenfei WANG, Congli LI, Jiahui YANG, Hao ZHENG, Qi SHI, Jinxiang DONG. CO working capacity and operating conditions of Co-MOF-74 and Mg-MOF-74 [J]. CIESC Journal, 2025, 76(5): 2279-2293. |
| [14] | Yaqi BA, Tao WU, Andi DI, Anhui LU. Progress in porous carbons for efficient separation of gaseous light hydrocarbon [J]. CIESC Journal, 2025, 76(5): 2136-2157. |
| [15] | Peng TAN, Xuemei LI, Xiaoqin LIU, Linbing SUN. Study on magnetically responsive composite materials based on flexible MOFs and their propylene adsorption performance [J]. CIESC Journal, 2025, 76(5): 2230-2240. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||