CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1711-1721.DOI: 10.11949/0438-1157.20240915
• Energy and environmental engineering • Previous Articles Next Articles
Zhineng TAO1(), Tong QIU1(
), Baoguo WANG1,2
Received:
2024-08-12
Revised:
2024-10-28
Online:
2025-05-12
Published:
2025-04-25
Contact:
Tong QIU
通讯作者:
邱彤
作者简介:
陶智能(2003—),男,博士研究生,tzn24@mails.tsinghua.edu.cn
CLC Number:
Zhineng TAO, Tong QIU, Baoguo WANG. Steady-state modeling on hydrogen production by anion exchange membrane water electrolysis[J]. CIESC Journal, 2025, 76(4): 1711-1721.
陶智能, 邱彤, 王保国. 阴离子交换膜电解水制氢稳态建模[J]. 化工学报, 2025, 76(4): 1711-1721.
比较项目 | 碱性电解水 (AWE) | 质子交换膜电解水 (PEMWE) | 阴离子交换膜电解水 (AEMWE) | AEMWE阳极加入 20%(质量)碱性离聚物 |
---|---|---|---|---|
温度/℃ | 70~90 | 65~85 | 65~85 | |
电流密度/( | 0.2~0.5 | 1.5~2.5 | 0.8~2.1 | |
电解液 | 30%(质量) KOH | 纯水 | 1 mol/L KOH/纯水 | |
隔膜 | 石棉布、PPS | 质子交换膜(PEM) | 阴离子交换膜(AEM) | |
响应范围 | 40%~100% | 20%~120% | 20%~120% | |
启动速度 | 慢 | 快 | 快 | |
动力学性能 | ++ | +++ | ++ | +++ |
导电性能 | + | ++ | ++ | +++ |
扩散性能 | + | +++ | +++ | ++ |
经济效益 | +++ | + | +++ | |
技术成熟度 | 9 | 7 | 4 | |
电解槽规模/MW | 5 | 1 | 0.05 | |
产业化程度 | 商业化应用 | 工程示范 | 工程示范,被称为“下一代绿色制氢技术” |
Table 1 Performance comparison of low-temperature water electrolysis hydrogen production technology
比较项目 | 碱性电解水 (AWE) | 质子交换膜电解水 (PEMWE) | 阴离子交换膜电解水 (AEMWE) | AEMWE阳极加入 20%(质量)碱性离聚物 |
---|---|---|---|---|
温度/℃ | 70~90 | 65~85 | 65~85 | |
电流密度/( | 0.2~0.5 | 1.5~2.5 | 0.8~2.1 | |
电解液 | 30%(质量) KOH | 纯水 | 1 mol/L KOH/纯水 | |
隔膜 | 石棉布、PPS | 质子交换膜(PEM) | 阴离子交换膜(AEM) | |
响应范围 | 40%~100% | 20%~120% | 20%~120% | |
启动速度 | 慢 | 快 | 快 | |
动力学性能 | ++ | +++ | ++ | +++ |
导电性能 | + | ++ | ++ | +++ |
扩散性能 | + | +++ | +++ | ++ |
经济效益 | +++ | + | +++ | |
技术成熟度 | 9 | 7 | 4 | |
电解槽规模/MW | 5 | 1 | 0.05 | |
产业化程度 | 商业化应用 | 工程示范 | 工程示范,被称为“下一代绿色制氢技术” |
电阻类型 | 说明 | 计算公式 |
---|---|---|
通道支撑电阻 | 电极催化层和极板处通道支撑的电阻 | |
通道电阻 | 电子不能通过气液传质通道迁移,通道前处迁移的电子需要绕过通道 | |
补偿电阻 | 绕过通道迁移至通道支撑处的过程中遇到的阻力 | |
极板电阻 | 从通道或通道支撑处通过的电子最终均要穿过极板至外接导线处,剩余极板可以当作整体考虑 |
Table 2 Four types of resistors in electrode resistance networks
电阻类型 | 说明 | 计算公式 |
---|---|---|
通道支撑电阻 | 电极催化层和极板处通道支撑的电阻 | |
通道电阻 | 电子不能通过气液传质通道迁移,通道前处迁移的电子需要绕过通道 | |
补偿电阻 | 绕过通道迁移至通道支撑处的过程中遇到的阻力 | |
极板电阻 | 从通道或通道支撑处通过的电子最终均要穿过极板至外接导线处,剩余极板可以当作整体考虑 |
主要参数设置 | 数值 |
---|---|
操作温度 | 70℃ |
阴极压力 | 1 bar |
膜厚度 | 50 |
膜水合程度 | 18 |
电渗阻力系数 | 3 |
阳极参考交换电流密度 | |
阴极参考交换电流密度 | |
参考温度 | 298.15 K |
阳极反应活化自由能 | 80.456 kJ/mol |
阴极反应活化自由能 | 52.145 kJ/mol |
气泡覆盖率为100%时极限电流密度 | 300 |
电极粗糙度 | 1 |
阳极电荷转移系数 | 1.65 |
阴极电荷转移系数 | 0.73 |
Table 3 Some parameters of electrochemical model settings[23-24,37]
主要参数设置 | 数值 |
---|---|
操作温度 | 70℃ |
阴极压力 | 1 bar |
膜厚度 | 50 |
膜水合程度 | 18 |
电渗阻力系数 | 3 |
阳极参考交换电流密度 | |
阴极参考交换电流密度 | |
参考温度 | 298.15 K |
阳极反应活化自由能 | 80.456 kJ/mol |
阴极反应活化自由能 | 52.145 kJ/mol |
气泡覆盖率为100%时极限电流密度 | 300 |
电极粗糙度 | 1 |
阳极电荷转移系数 | 1.65 |
阴极电荷转移系数 | 0.73 |
1 | International Energy Agency. World Energy Statistics 2023 [EB/OL]. 2023. . |
2 | 王培灿, 万磊, 徐子昂, 等. 碱性膜电解水制氢技术现状与展望[J]. 化工学报, 2021, 72(12): 6161-6175. |
Wang P C, Wan L, Xu Z A, et al. Hydrogen production based-on anion exchange membrane water electrolysis: a critical review and perspective[J]. CIESC Journal, 2021, 72(12): 6161-6175. | |
3 | Liu L, Ma H Y, Khan M, et al. Recent advances and challenges in anion exchange membranes development/application for water electrolysis: a review[J]. Membranes, 2024, 14(4): 85. |
4 | Park J E, Park S, Kim M J, et al. Three-dimensional unified electrode design using a NiFeOOH catalyst for superior performance and durable anion-exchange membrane water electrolyzers[J]. ACS Catalysis, 2022, 12(1): 135-145. |
5 | Lin N, Feng S H, Wang J G. Multiphysics modeling of proton exchange membrane water electrolysis: from steady to dynamic behavior[J]. AIChE Journal, 2022, 68(8): e17742. |
6 | Biswas S, Kaur G, Paul G, et al. A critical review on cathode materials for steam electrolysis in solid oxide electrolysis[J]. International Journal of Hydrogen Energy, 2023, 48(34): 12541-12570. |
7 | Ryoo G W, Park S H, Kwon K C, et al. Towards high-performance and robust anion exchange membranes (AEMs) for water electrolysis: super-acid-catalyzed synthesis of AEMs[J]. Journal of Energy Chemistry, 2024, 93: 478-510. |
8 | Pavel C C, Cecconi F, Emiliani C, et al. Highly efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis[J]. Angewandte Chemie International Edition, 2014, 53(5): 1378-1381. |
9 | Vincent I, Kruger A, Bessarabov D. Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis[J]. International Journal of Hydrogen Energy, 2017, 42(16): 10752-10761. |
10 | 高渊, 张议洁, 赵强, 等. 阴离子交换膜电解水技术及其析氧催化剂的研究进展与展望[J]. 中国科学: 化学, 2024, 54(10): 1837-1847. |
Gao Y, Zhang Y J, Zhao Q, et al. Research progress and prospect of anionic exchange membrane electrolyzer and OER electrocatalysts[J]. Scientia Sinica (Chimica), 2024, 54(10): 1837-1847. | |
11 | 马颖, 丁睿, 刘岩岩, 等. 阴离子交换膜电解水制氢关键技术研究[J]. 今日制造与升级, 2022(9): 131-133. |
Ma Y, Ding R, Liu Y Y, et al. Study on key technology of hydrogen production by electrolysis of water with anion exchange membrane[J]. Manufacture & Upgrading Today, 2022(9): 131-133. | |
12 | 钱圣涛, 何勇, 翁武斌, 等. 阴离子交换膜电解水制氢技术的研究进展[J]. 新能源进展, 2024, 12(1): 1-14. |
Qian S T, He Y, Weng W B, et al. Research progress of anion exchange membrane water electrolysis technology for hydrogen production[J]. Advances in New and Renewable Energy, 2024, 12(1): 1-14. | |
13 | 邢学奇, 宋鹏翔, 申爱景,等. 电解水制氢用阴离子交换膜研究进展[J]. 储能科学与技术, 2024, 13(11): 3856-3870. |
Xing X Q, Song P X, Shen A J, et al. Research progress of anion exchange membranes for hydrogen production by water electrolysis [J]. Energy Storage Science and Technology, 2024, 13(11): 3856-3870. | |
14 | 白佳凯, 张安然, 李朋喜, 等. 阴离子交换膜在电解水制氢领域的研究进展[J]. 河南化工, 2024, 41(9): 36-39. |
Bai J K, Zhang A R, Li P X, et al. Research progress of anion exchange membrane in the field of electrolysis water hydrogen production[J]. Henan Chemical Industry, 2024, 41(9): 36-39. | |
15 | 李楠楠. 阴离子交换膜电解水制氢非碳基膜电极的研究[D]. 大连: 大连理工大学, 2022. |
Li N N. Research on non-carbon-based membrane electrodes for hydrogen production by anion exchange membrane electrolysis of water[D]. Dalian: Dalian University of Technology, 2022. | |
16 | 党悦晨. 高电流密度高稳定性镍基催化电极构筑及其阴离子交换膜电解水制氢性能研究[D]. 延安: 延安大学, 2023. |
Dang Y C. Construction of high-current-density and high-stability nickel-based electrode material and exploration on hydrogen production by anion exchange membrane electrolytic water [D]. Yan'an: Yan'an University, 2023. | |
17 | Gomez Vidales A, Millan N C, Bock C. Modeling of anion exchange membrane water electrolyzers: the influence of operating parameters[J]. Chemical Engineering Research and Design, 2023, 194: 636-648. |
18 | Lawand K, Nuggehalli Sampathkumar S, Mury Z, et al. Membrane electrode assembly simulation of anion exchange membrane water electrolysis[J]. Journal of Power Sources, 2024, 595: 234047. |
19 | Moradi Nafchi F, Afshari E, Baniasadi E. Anion exchange membrane water electrolysis: numerical modeling and electrochemical performance analysis[J]. International Journal of Hydrogen Energy, 2024, 52: 306-321. |
20 | 万磊. 碱性电解水用有序化膜电极的结构设计及制备研究[D]. 北京: 清华大学, 2023. |
Wan L. Fabrication and study of ordered membrane electrode assembly for alkaline water electrolysis[D]. Beijing: Tsinghua University, 2023. | |
21 | McLeod A J, Bühre L V, Bensmann B, et al. Anode and cathode overpotentials under accelerated stress testing of a PEM electrolysis cell[J]. Journal of Power Sources, 2024, 589: 233750. |
22 | Awasthi A, Scott K, Basu S. Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production[J]. International Journal of Hydrogen Energy, 2011, 36(22): 14779-14786. |
23 | Abdin Z, Webb C J, Gray E M. Modelling and simulation of an alkaline electrolyser cell[J]. Energy, 2017, 138: 316-331. |
24 | Abdin Z, Webb C J, Gray E M. Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell[J]. International Journal of Hydrogen Energy, 2015, 40(39): 13243-13257. |
25 | Balej J. Water vapour partial pressures and water activities in potassium and sodium hydroxide solutions over wide concentration and temperature ranges[J]. International Journal of Hydrogen Energy, 1985, 10(4): 233-243. |
26 | Caprì A, Gatto I, Lo Vecchio C, et al. Anion exchange membrane water electrolysis based on nickel ferrite catalysts[J]. ChemElectroChem, 2023, 10(1): e202201056. |
27 | Marangio F, Santarelli M, Calì M. Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production[J]. International Journal of Hydrogen Energy, 2009, 34(3): 1143-1158. |
28 | Marr C, Li X. An engineering model of proton exchange membrane fuel cell performance[J]. ARI — an International Journal for Physical and Engineering Sciences, 1997, 50(4): 190-200. |
29 | Fei D X, Fan W W, Dou Z L, et al. Mathematical model and dynamic Simulink simulation of PEM electrolyzer system[J]. E3S Web of Conferences, 2023, 441: 02012. |
30 | Ni M, Leung M, Leung Y. Electrochemistry modeling of proton exchange membrane (PEM) water electrolysis for hydrogen production[C]//WHEC 2006. 2006: 33-39. |
31 | Springer T E, Zawodzinski T A, Gottesfeld S. Polymer electrolyte fuel cell model[J]. Journal of the Electrochemical Society, 1991, 138(8): 2334-2342. |
32 | Shen M Z, Bennett N, Ding Y L, et al. A concise model for evaluating water electrolysis[J]. International Journal of Hydrogen Energy, 2011, 36(22): 14335-14341. |
33 | Colbertaldo P, Gómez Aláez S L, Campanari S. Zero-dimensional dynamic modeling of PEM electrolyzers[J]. Energy Procedia, 2017, 142: 1468-1473. |
34 | Han B, Steen S M, Mo J K, et al. Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy[J]. International Journal of Hydrogen Energy, 2015, 40(22): 7006-7016. |
35 | Hernández-Pacheco E, Singh D, Hutton P N, et al. A macro-level model for determining the performance characteristics of solid oxide fuel cells[J]. Journal of Power Sources, 2004, 138(1/2): 174-186. |
36 | Xiao L, Zhang S, Pan J, et al. First implementation of alkaline polymer electrolyte water electrolysis working only with pure water[J]. Energy & Environmental Science, 2012, 5(7): 7869-7871. |
37 | Thampan T, Malhotra S, Zhang J X, et al. PEM fuel cell as a membrane reactor[J]. Catalysis Today, 2001, 67(1/2/3): 15-32. |
[1] | Lu LIU, Kai WAN, Wenyue WANG, Tai WANG, Jiancheng TANG, Shaoheng WANG. Study on orthohydrogen and parahydrogen conversion coupled flow and heat transfer based on helium expansion refrigeration [J]. CIESC Journal, 2025, 76(4): 1513-1522. |
[2] | Runjian LIU, Gang LIN, Ling ZHANG, Dong XU, Ming LI, Luchang HAN. A coupling model of the approaching-thinning process with the effect of bubble surface deformation [J]. CIESC Journal, 2025, 76(4): 1504-1512. |
[3] | Chengcheng XU, Suola SHAO, Wenjian WEI, Xu ZHENG. Research on heating performance of direct-condensation thermal storage aluminum radiant heating panel under multiple working conditions [J]. CIESC Journal, 2025, 76(4): 1545-1558. |
[4] | Feng ZHU, Yue ZHAO, Fengxiang MA, Wei LIU. Adsorption properties of modified UIO-66 for SF6/N2 gas mixture and its decomposition products [J]. CIESC Journal, 2025, 76(4): 1604-1616. |
[5] | Pengfei ZHAO, Ruomei QI, Xinfeng GUO, Hu FANG, Lufei XU, Xiao LI, Jin LIN. Analysis of hydrogen-to-oxygen impurities in a 1000 m3/h alkaline water electrolysis system [J]. CIESC Journal, 2025, 76(4): 1765-1778. |
[6] | Yinjie ZHOU, Sibei JI, Songyang HE, Xu JI, Ge HE. Machine learning-assisted high-throughput screening approach for CO2 separation from CO2-rich natural gas using metal-organic frameworks [J]. CIESC Journal, 2025, 76(3): 1093-1101. |
[7] | Junbing XIAO, Bo ZOU, Jiandi REN, Changhui LIU, Chuankun JIA. Research on heat storage performance of chloride composite molten salt based on phase diagram analysis [J]. CIESC Journal, 2025, 76(3): 963-974. |
[8] | Jun WAN, Jiarui SONG, Chunhuang FAN, Lele WEI, Yina NIE, Lin LIU. Highly efficient hole transfer for promoting photocatalytic hydrogen production from alkaline methanol aqueous solution [J]. CIESC Journal, 2025, 76(3): 1064-1075. |
[9] | Ke QI, Di WANG, Zhe XIE, Dongsheng CHEN, Yunlong ZHOU, Lingfang SUN. Research on transient characteristics of solid oxide fuel cells considering coupling features of multiphysics fields [J]. CIESC Journal, 2025, 76(3): 1264-1274. |
[10] | Wenlong JIA, Huan XIAO, Xiangyu LENG, Qiaojing HUANG, Chengwei LIU, Xia WU. Experimental and numerical simulation of ultrasonic cavitation microjet cleaning of heavy deposition in crude oil storage tank [J]. CIESC Journal, 2025, 76(3): 1288-1296. |
[11] | Zongting WANG, Lili WANG, Xiaoyan SUN, Li XIA, Shaohui TAO, Shuguang XIANG. Simplified phase equilibrium correlation-based efficient and short-cut distillation column model [J]. CIESC Journal, 2025, 76(3): 1133-1142. |
[12] | Jingrun LI, Siyu YANG, Qinghui LIU, An PAN, Jiayue WANG, Xiaogui FU, Hao YU. Analysis of multiple operating strategies for large-scale wind power coupled with thermal power for hydrogen production under various scenarios [J]. CIESC Journal, 2025, 76(3): 1191-1206. |
[13] | Jingyu JIA, Deqi KONG, Yuanhui SHEN, Donghui ZHANG, Wenbin LI, Zhongli TANG. Simulation and analysis of ammonia separation process by pressure swing adsorption from synthetic ammonia reactor-off gas [J]. CIESC Journal, 2025, 76(2): 718-730. |
[14] | Gonghan GUO, Huidian DING, Qiang LI, Shengkun JIA, Xing QIAN, Yang YUAN, Haisheng CHEN, Yiqing LUO. Dynamic Bayesian optimization method for batch distillation operation process [J]. CIESC Journal, 2025, 76(2): 755-768. |
[15] | Falu DANG, Zhiguo SUN, Zhao GAO, Gang WANG, Zhengyu CHEN, Linzhou ZHANG, Jingcun LIAN, Meijia LIU, Zhongdong ZHANG, Chaowei LIU. One-step catalytic cracking of crude oil to light olefins: experimental and reaction pathway studies [J]. CIESC Journal, 2025, 76(2): 667-685. |
Viewed | ||||||
Full text 405
|
|
|||||
Abstract |
|
|||||